This report benchmark the performance of sum2() on subsetted computation.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5339042 285.2    8529671 455.6   8529671 455.6
Vcells 16966105 129.5   35919338 274.1 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 0.003888 | 0.003944 | 0.0041001 | 0.0040685 | 0.0041925 | 0.005062 | 
| 3 | sum2(x[idxs]) | 0.006465 | 0.006634 | 0.0090127 | 0.0067995 | 0.0069405 | 0.211990 | 
| 2 | sum2(x, idxs) | 0.006585 | 0.006819 | 0.0071780 | 0.0069955 | 0.0071600 | 0.021329 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | sum2(x[idxs]) | 1.662809 | 1.682049 | 2.198174 | 1.671255 | 1.655456 | 41.878704 | 
| 2 | sum2(x, idxs) | 1.693673 | 1.728955 | 1.750705 | 1.719430 | 1.707812 | 4.213552 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337016 285.1    8529671 455.6   8529671 455.6
Vcells 15836808 120.9   35919338 274.1 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 0.016542 | 0.0171135 | 0.0180283 | 0.0175225 | 0.0181555 | 0.043571 | 
| 3 | sum2(x[idxs]) | 0.037432 | 0.0386760 | 0.0411477 | 0.0397415 | 0.0410015 | 0.082208 | 
| 2 | sum2(x, idxs) | 0.039996 | 0.0416600 | 0.0431274 | 0.0424055 | 0.0436945 | 0.060357 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | sum2(x[idxs]) | 2.262846 | 2.259970 | 2.282401 | 2.268027 | 2.258351 | 1.886759 | 
| 2 | sum2(x, idxs) | 2.417845 | 2.434335 | 2.392212 | 2.420060 | 2.406681 | 1.385256 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337088 285.1    8529671 455.6   8529671 455.6
Vcells 15900368 121.4   35919338 274.1 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 0.103240 | 0.111763 | 0.1629306 | 0.1360855 | 0.2284565 | 0.309776 | 
| 2 | sum2(x, idxs) | 0.275884 | 0.305763 | 0.4091385 | 0.3538015 | 0.5390420 | 0.732925 | 
| 3 | sum2(x[idxs]) | 0.269274 | 0.291527 | 0.4129744 | 0.3563350 | 0.5721275 | 0.699163 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | sum2(x, idxs) | 2.672259 | 2.735816 | 2.511121 | 2.599847 | 2.359495 | 2.365984 | 
| 3 | sum2(x[idxs]) | 2.608233 | 2.608439 | 2.534664 | 2.618464 | 2.504317 | 2.256995 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337160 285.1    8529671 455.6   8529671 455.6
Vcells 16530417 126.2   35919338 274.1 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.035728 | 1.144772 | 1.198305 | 1.186244 | 1.218014 | 1.530576 | 
| 3 | sum2(x[idxs]) | 3.770716 | 4.764187 | 5.140660 | 4.982477 | 5.170399 | 18.618434 | 
| 2 | sum2(x, idxs) | 4.045700 | 6.052726 | 10.287626 | 6.256565 | 6.515727 | 388.068841 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 3 | sum2(x[idxs]) | 3.640643 | 4.161689 | 4.289941 | 4.200215 | 4.244942 | 12.16433 | 
| 2 | sum2(x, idxs) | 3.906141 | 5.287274 | 8.585145 | 5.274267 | 5.349468 | 253.54431 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337232 285.1    8529671 455.6   8529671 455.6
Vcells 22830465 174.2   35919338 274.1 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 11.93667 | 15.40207 | 17.26997 | 16.03664 | 20.18322 | 25.04504 | 
| 2 | sum2(x, idxs) | 119.20238 | 133.66502 | 142.01954 | 143.87386 | 149.18902 | 169.49411 | 
| 3 | sum2(x[idxs]) | 128.06503 | 140.13187 | 148.41911 | 145.64447 | 148.90959 | 502.87241 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | sum2(x, idxs) | 9.98623 | 8.678378 | 8.223495 | 8.971574 | 7.391736 | 6.767573 | 
| 3 | sum2(x[idxs]) | 10.72870 | 9.098246 | 8.594056 | 9.081984 | 7.377891 | 20.078725 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337304 285.1    8529671 455.6   8529671 455.6
Vcells 21387621 163.2   43183205 329.5 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 0.003315 | 0.0068155 | 0.0065835 | 0.0070115 | 0.0071520 | 0.007755 | 
| 3 | sum2(x[idxs]) | 0.005372 | 0.0105045 | 0.0107345 | 0.0108215 | 0.0110625 | 0.051268 | 
| 2 | sum2(x, idxs) | 0.006120 | 0.0117700 | 0.0117878 | 0.0121080 | 0.0122820 | 0.014512 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | sum2(x[idxs]) | 1.620513 | 1.541266 | 1.630519 | 1.543393 | 1.546770 | 6.610961 | 
| 2 | sum2(x, idxs) | 1.846154 | 1.726946 | 1.790510 | 1.726877 | 1.717282 | 1.871309 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337376 285.1    8529671 455.6   8529671 455.6
Vcells 21397118 163.3   43183205 329.5 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 0.012539 | 0.013029 | 0.0138391 | 0.0133220 | 0.0136885 | 0.025307 | 
| 3 | sum2(x[idxs]) | 0.029324 | 0.030377 | 0.0344914 | 0.0326805 | 0.0351940 | 0.098803 | 
| 2 | sum2(x, idxs) | 0.037780 | 0.038241 | 0.0419622 | 0.0406485 | 0.0418245 | 0.082499 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | sum2(x[idxs]) | 2.338624 | 2.331491 | 2.492310 | 2.453123 | 2.571063 | 3.904177 | 
| 2 | sum2(x, idxs) | 3.012999 | 2.935068 | 3.032139 | 3.051231 | 3.055448 | 3.259928 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337448 285.1    8529671 455.6   8529671 455.6
Vcells 21491986 164.0   43183205 329.5 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 0.074775 | 0.0787330 | 0.0948227 | 0.0911010 | 0.1053205 | 0.176324 | 
| 2 | sum2(x, idxs) | 0.267652 | 0.2787425 | 0.3251536 | 0.3077015 | 0.3561590 | 0.504595 | 
| 3 | sum2(x[idxs]) | 0.255743 | 0.2721100 | 0.3210709 | 0.3160875 | 0.3490395 | 0.603275 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | sum2(x, idxs) | 3.579432 | 3.540352 | 3.429068 | 3.377586 | 3.381668 | 2.861749 | 
| 3 | sum2(x[idxs]) | 3.420167 | 3.456111 | 3.386012 | 3.469638 | 3.314070 | 3.421400 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337520 285.1    8529671 455.6   8529671 455.6
Vcells 22437417 171.2   43183205 329.5 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.275939 | 1.346394 | 1.409058 | 1.372686 | 1.447218 | 1.930537 | 
| 3 | sum2(x[idxs]) | 7.534066 | 9.775640 | 10.968739 | 10.861674 | 12.071755 | 22.010154 | 
| 2 | sum2(x, idxs) | 7.902787 | 10.818909 | 12.123413 | 11.409294 | 12.962701 | 25.696688 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 
| 3 | sum2(x[idxs]) | 5.904723 | 7.260612 | 7.784446 | 7.912713 | 8.341352 | 11.40105 | 
| 2 | sum2(x, idxs) | 6.193703 | 8.035473 | 8.603910 | 8.311653 | 8.956979 | 13.31064 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5337592 285.1    8529671 455.6   8529671 455.6
Vcells 31887465 243.3   51899846 396.0 101881463 777.3
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]), 
+     unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 10.47633 | 13.53525 | 16.05734 | 14.62333 | 19.78404 | 21.19626 | 
| 2 | sum2(x, idxs) | 129.07190 | 168.06425 | 180.12031 | 175.49009 | 187.25718 | 571.11144 | 
| 3 | sum2(x[idxs]) | 138.63391 | 179.40518 | 187.78671 | 185.09707 | 196.74914 | 216.24259 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | sum2_x_S | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 
| 2 | sum2(x, idxs) | 12.32034 | 12.41678 | 11.21732 | 12.00070 | 9.465061 | 26.94397 | 
| 3 | sum2(x[idxs]) | 13.23306 | 13.25466 | 11.69476 | 12.65766 | 9.944840 | 10.20192 | 
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    
loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            
Total processing time was 1.51 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('sum2_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 19:27:41 (+0200 UTC). Powered by RSP.