matrixStats.benchmarks


product() benchmarks

This report benchmark the performance of product() against alternative methods.

Alternative methods

where

> product_R <- function(x, na.rm = FALSE, ...) {
+     if (length(x) == 0L) 
+         return(0)
+     if (na.rm) {
+         x <- x[!is.na(x)]
+     }
+     if (is.integer(x) && any(x == 0)) 
+         return(0)
+     sign <- if (sum(x < 0)%%2 == 0) 
+         +1     else -1
+     x <- abs(x)
+     x <- log(x)
+     x <- sum(x, na.rm = FALSE)
+     x <- exp(x)
+     y <- sign * x
+     y
+ }

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5338726 285.2    8529671 455.6   8529671 455.6
Vcells 13569882 103.6   35919338 274.1 101881463 777.3
> stats <- microbenchmark(product = product(x, na.rm = FALSE), product_R = product_R(x, na.rm = FALSE), 
+     prod = prod(x, na.rm = FALSE), unit = "ms")

Table: Benchmarking of product(), product_R() and prod() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 prod 0.001970 0.0020195 0.0022598 0.0020890 0.0023905 0.003337
1 product 0.029076 0.0301525 0.0348078 0.0307970 0.0381690 0.061026
2 product_R 0.031164 0.0324480 0.1610031 0.0329075 0.0420490 12.275752
  expr min lq mean median uq max
3 prod 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 product 14.75939 14.93068 15.40332 14.74246 15.96695 18.28768
2 product_R 15.81929 16.06734 71.24787 15.75275 17.59004 3678.67905

Figure: Benchmarking of product(), product_R() and prod() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5336554 285.1    8529671 455.6   8529671 455.6
Vcells 11385692  86.9   35919338 274.1 101881463 777.3
> stats <- microbenchmark(product = product(x, na.rm = FALSE), product_R = product_R(x, na.rm = FALSE), 
+     prod = prod(x, na.rm = FALSE), unit = "ms")

Table: Benchmarking of product(), product_R() and prod() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 product_R 0.223610 0.2253630 0.2437561 0.226601 0.2467465 0.376809
1 product 0.228073 0.2300745 0.2526849 0.230937 0.2571335 0.400361
3 prod 0.632889 0.6381310 0.6922717 0.641637 0.7076230 1.003408
  expr min lq mean median uq max
2 product_R 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 product 1.019959 1.020906 1.036630 1.019135 1.042096 1.062504
3 prod 2.830325 2.831570 2.840017 2.831572 2.867814 2.662909

Figure: Benchmarking of product(), product_R() and prod() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5336626 285.1    8529671 455.6   8529671 455.6
Vcells 11386252  86.9   35919338 274.1 101881463 777.3
> stats <- microbenchmark(product = product(x, na.rm = FALSE), product_R = product_R(x, na.rm = FALSE), 
+     prod = prod(x, na.rm = FALSE), unit = "ms")

Table: Benchmarking of product(), product_R() and prod() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 product_R 2.213171 2.239659 2.608884 2.274475 2.799769 13.582452
1 product 2.257990 2.308847 2.363410 2.313592 2.347230 3.406615
3 prod 8.833006 8.950071 9.047510 8.981056 9.034463 11.730022
  expr min lq mean median uq max
2 product_R 1.000000 1.000000 1.0000000 1.000000 1.0000000 1.0000000
1 product 1.020251 1.030892 0.9059085 1.017198 0.8383656 0.2508100
3 prod 3.991109 3.996176 3.4679621 3.948628 3.2268603 0.8636159

Figure: Benchmarking of product(), product_R() and prod() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5336698 285.1    8529671 455.6   8529671 455.6
Vcells 11386301  86.9   35919338 274.1 101881463 777.3
> stats <- microbenchmark(product = product(x, na.rm = FALSE), product_R = product_R(x, na.rm = FALSE), 
+     prod = prod(x, na.rm = FALSE), unit = "ms")

Table: Benchmarking of product(), product_R() and prod() on n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 product_R 23.49997 25.67259 27.69921 26.87910 28.38922 40.60999
1 product 23.46858 25.88476 27.38120 27.38787 28.57990 31.64119
3 prod 91.87098 92.74811 95.47893 93.95793 96.18996 111.40707
  expr min lq mean median uq max
2 product_R 1.0000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
1 product 0.9986644 1.008264 0.9885191 1.018928 1.006716 0.7791479
3 prod 3.9094092 3.612729 3.4469913 3.495576 3.388256 2.7433413

Figure: Benchmarking of product(), product_R() and prod() on n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 22.04 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('product')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 19:26:09 (+0200 UTC). Powered by RSP.