This report benchmark the performance of mean2() on subsetted computation.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5343782 285.4 8529671 455.6 8529671 455.6
Vcells 16994035 129.7 33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 0.002617 | 0.0026800 | 0.0027879 | 0.0027855 | 0.0028580 | 0.003139 |
2 | mean2_x_S_no_refine | 0.002625 | 0.0026925 | 0.0028074 | 0.0027875 | 0.0028820 | 0.003789 |
6 | mean2_no_refine(x[idxs]) | 0.005270 | 0.0054265 | 0.0069546 | 0.0055245 | 0.0056670 | 0.145760 |
5 | mean2(x[idxs]) | 0.005305 | 0.0054455 | 0.0055669 | 0.0055265 | 0.0056240 | 0.006907 |
4 | mean2_no_refine(x, idxs) | 0.005361 | 0.0054705 | 0.0056265 | 0.0055845 | 0.0057365 | 0.006292 |
3 | mean2(x, idxs) | 0.005354 | 0.0055135 | 0.0056912 | 0.0056400 | 0.0058250 | 0.007782 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | mean2_x_S_no_refine | 1.003057 | 1.004664 | 1.006962 | 1.000718 | 1.008398 | 1.207072 |
6 | mean2_no_refine(x[idxs]) | 2.013756 | 2.024813 | 2.494516 | 1.983306 | 1.982855 | 46.435170 |
5 | mean2(x[idxs]) | 2.027130 | 2.031903 | 1.996786 | 1.984024 | 1.967810 | 2.200382 |
4 | mean2_no_refine(x, idxs) | 2.048529 | 2.041231 | 2.018142 | 2.004847 | 2.007173 | 2.004460 |
3 | mean2(x, idxs) | 2.045854 | 2.057276 | 2.041364 | 2.024771 | 2.038139 | 2.479134 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5331508 284.8 8529671 455.6 8529671 455.6
Vcells 15833074 120.8 33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 0.010794 | 0.0114820 | 0.0122459 | 0.0122445 | 0.0127205 | 0.013998 |
2 | mean2_x_S_no_refine | 0.010723 | 0.0114335 | 0.0123639 | 0.0123120 | 0.0130385 | 0.015634 |
6 | mean2_no_refine(x[idxs]) | 0.029503 | 0.0311895 | 0.0333866 | 0.0328465 | 0.0348800 | 0.046098 |
5 | mean2(x[idxs]) | 0.028908 | 0.0317200 | 0.0335386 | 0.0335125 | 0.0349180 | 0.049548 |
4 | mean2_no_refine(x, idxs) | 0.030674 | 0.0328510 | 0.0362676 | 0.0351895 | 0.0389210 | 0.070046 |
3 | mean2(x, idxs) | 0.030257 | 0.0322325 | 0.0359282 | 0.0357235 | 0.0380070 | 0.055797 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | mean2_x_S_no_refine | 0.9934223 | 0.995776 | 1.009643 | 1.005513 | 1.024999 | 1.116874 |
6 | mean2_no_refine(x[idxs]) | 2.7332777 | 2.716382 | 2.726360 | 2.682551 | 2.742031 | 3.293185 |
5 | mean2(x[idxs]) | 2.6781545 | 2.762585 | 2.738773 | 2.736943 | 2.745018 | 3.539649 |
4 | mean2_no_refine(x, idxs) | 2.8417639 | 2.861087 | 2.961620 | 2.873903 | 3.059707 | 5.004001 |
3 | mean2(x, idxs) | 2.8031314 | 2.807220 | 2.933910 | 2.917514 | 2.987854 | 3.986069 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5331607 284.8 8529671 455.6 8529671 455.6
Vcells 15896652 121.3 33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.073527 | 0.0756660 | 0.0851851 | 0.0783055 | 0.0925870 | 0.129134 |
1 | mean2_x_S | 0.073509 | 0.0756385 | 0.0837340 | 0.0794795 | 0.0897670 | 0.117633 |
6 | mean2_no_refine(x[idxs]) | 0.221539 | 0.2335015 | 0.2773580 | 0.2771705 | 0.3177650 | 0.374438 |
5 | mean2(x[idxs]) | 0.221734 | 0.2386475 | 0.2804623 | 0.2785185 | 0.3143685 | 0.457560 |
3 | mean2(x, idxs) | 0.249248 | 0.2649270 | 0.3884439 | 0.2992800 | 0.4184140 | 6.716517 |
4 | mean2_no_refine(x, idxs) | 0.245279 | 0.2639460 | 0.3185506 | 0.3024775 | 0.3546150 | 0.434245 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
1 | mean2_x_S | 0.9997552 | 0.9996366 | 0.9829651 | 1.014993 | 0.9695422 | 0.9109375 |
6 | mean2_no_refine(x[idxs]) | 3.0130292 | 3.0859501 | 3.2559449 | 3.539604 | 3.4320693 | 2.8996082 |
5 | mean2(x[idxs]) | 3.0156813 | 3.1539595 | 3.2923877 | 3.556819 | 3.3953849 | 3.5432961 |
3 | mean2(x, idxs) | 3.3898840 | 3.5012687 | 4.5599985 | 3.821954 | 4.5191442 | 52.0119953 |
4 | mean2_no_refine(x, idxs) | 3.3359038 | 3.4883039 | 3.7395113 | 3.862787 | 3.8300733 | 3.3627472 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5331706 284.8 8529671 455.6 8529671 455.6
Vcells 16526934 126.1 33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 0.888980 | 0.970562 | 0.9870926 | 0.9813695 | 1.004870 | 1.153251 |
2 | mean2_x_S_no_refine | 0.908760 | 0.970577 | 0.9978088 | 0.9825275 | 1.019047 | 1.260782 |
6 | mean2_no_refine(x[idxs]) | 3.841791 | 4.892468 | 5.3651200 | 5.0987125 | 5.278500 | 16.702025 |
5 | mean2(x[idxs]) | 3.957112 | 4.925172 | 5.1072061 | 5.1187365 | 5.339589 | 6.302222 |
3 | mean2(x, idxs) | 4.279667 | 6.379384 | 6.5634663 | 6.5185200 | 6.940049 | 16.112859 |
4 | mean2_no_refine(x, idxs) | 4.347253 | 6.408241 | 7.2835367 | 6.6077075 | 7.058704 | 17.249946 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | mean2_x_S_no_refine | 1.022250 | 1.000015 | 1.010856 | 1.001180 | 1.014108 | 1.093242 |
6 | mean2_no_refine(x[idxs]) | 4.321572 | 5.040860 | 5.435275 | 5.195507 | 5.252919 | 14.482558 |
5 | mean2(x[idxs]) | 4.451295 | 5.074556 | 5.173989 | 5.215911 | 5.313711 | 5.464744 |
3 | mean2(x, idxs) | 4.814132 | 6.572876 | 6.649292 | 6.642269 | 6.906415 | 13.971684 |
4 | mean2_no_refine(x, idxs) | 4.890158 | 6.602609 | 7.378778 | 6.733149 | 7.024495 | 14.957668 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5331805 284.8 8529671 455.6 8529671 455.6
Vcells 22827611 174.2 40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 8.963665 | 12.25291 | 13.42115 | 13.53164 | 14.27329 | 17.88091 |
2 | mean2_x_S_no_refine | 9.692483 | 12.69796 | 13.90028 | 13.56586 | 16.41305 | 17.10707 |
3 | mean2(x, idxs) | 116.771360 | 126.50532 | 132.13719 | 133.08509 | 137.16898 | 144.61707 |
4 | mean2_no_refine(x, idxs) | 117.632574 | 128.45040 | 133.48622 | 133.49306 | 139.71935 | 147.40210 |
6 | mean2_no_refine(x[idxs]) | 124.669728 | 135.14550 | 143.87622 | 141.00332 | 144.38891 | 523.71038 |
5 | mean2(x[idxs]) | 124.945997 | 136.12857 | 140.59447 | 141.01150 | 144.73820 | 153.55588 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | mean2_x_S_no_refine | 1.081308 | 1.036323 | 1.035700 | 1.002529 | 1.149913 | 0.9567224 |
3 | mean2(x, idxs) | 13.027189 | 10.324515 | 9.845444 | 9.835104 | 9.610185 | 8.0877901 |
4 | mean2_no_refine(x, idxs) | 13.123268 | 10.483260 | 9.945958 | 9.865253 | 9.788866 | 8.2435443 |
6 | mean2_no_refine(x[idxs]) | 13.908343 | 11.029669 | 10.720110 | 10.420268 | 10.116020 | 29.2887940 |
5 | mean2(x[idxs]) | 13.939164 | 11.109901 | 10.475589 | 10.420872 | 10.140491 | 8.5876980 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5331907 284.8 8529671 455.6 8529671 455.6
Vcells 21384601 163.2 40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.002801 | 0.0028840 | 0.0032010 | 0.0029540 | 0.0030335 | 0.017288 |
1 | mean2_x_S | 0.003950 | 0.0040340 | 0.0041943 | 0.0040870 | 0.0042330 | 0.010007 |
6 | mean2_no_refine(x[idxs]) | 0.005062 | 0.0053085 | 0.0057585 | 0.0054570 | 0.0056485 | 0.023367 |
4 | mean2_no_refine(x, idxs) | 0.005434 | 0.0056365 | 0.0058133 | 0.0057765 | 0.0059000 | 0.006759 |
5 | mean2(x[idxs]) | 0.006200 | 0.0064090 | 0.0066228 | 0.0065635 | 0.0067735 | 0.007747 |
3 | mean2(x, idxs) | 0.006665 | 0.0068155 | 0.0070322 | 0.0069650 | 0.0071795 | 0.009142 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | mean2_x_S | 1.410211 | 1.398752 | 1.310285 | 1.383548 | 1.395418 | 0.5788408 |
6 | mean2_no_refine(x[idxs]) | 1.807212 | 1.840673 | 1.798955 | 1.847326 | 1.862040 | 1.3516312 |
4 | mean2_no_refine(x, idxs) | 1.940021 | 1.954404 | 1.816084 | 1.955484 | 1.944948 | 0.3909648 |
5 | mean2(x[idxs]) | 2.213495 | 2.222261 | 2.068971 | 2.221903 | 2.232899 | 0.4481143 |
3 | mean2(x, idxs) | 2.379507 | 2.363211 | 2.196858 | 2.357820 | 2.366738 | 0.5288061 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5332003 284.8 8529671 455.6 8529671 455.6
Vcells 21394560 163.3 40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.013189 | 0.0136025 | 0.0146243 | 0.0143285 | 0.0153315 | 0.019333 |
1 | mean2_x_S | 0.022512 | 0.0229240 | 0.0248455 | 0.0244275 | 0.0261100 | 0.043589 |
6 | mean2_no_refine(x[idxs]) | 0.029430 | 0.0310335 | 0.0334698 | 0.0323710 | 0.0358140 | 0.046852 |
4 | mean2_no_refine(x, idxs) | 0.032794 | 0.0334905 | 0.0372509 | 0.0355420 | 0.0391355 | 0.076246 |
5 | mean2(x[idxs]) | 0.038999 | 0.0409790 | 0.0440330 | 0.0437330 | 0.0466370 | 0.059871 |
3 | mean2(x, idxs) | 0.043297 | 0.0444420 | 0.0484117 | 0.0470765 | 0.0514175 | 0.067115 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 1.706877 | 1.685278 | 1.698924 | 1.704819 | 1.703030 | 2.254642 |
6 | mean2_no_refine(x[idxs]) | 2.231405 | 2.281456 | 2.288645 | 2.259204 | 2.335975 | 2.423421 |
4 | mean2_no_refine(x, idxs) | 2.486466 | 2.462084 | 2.547199 | 2.480511 | 2.552620 | 3.943827 |
5 | mean2(x[idxs]) | 2.956934 | 3.012608 | 3.010952 | 3.052169 | 3.041907 | 3.096829 |
3 | mean2(x, idxs) | 3.282811 | 3.267193 | 3.310364 | 3.285515 | 3.353716 | 3.471525 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5332102 284.8 8529671 455.6 8529671 455.6
Vcells 21489668 164.0 40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.091491 | 0.0919595 | 0.1028826 | 0.0960520 | 0.1081820 | 0.164275 |
1 | mean2_x_S | 0.163594 | 0.1655625 | 0.1798339 | 0.1725650 | 0.1915510 | 0.231438 |
4 | mean2_no_refine(x, idxs) | 0.269157 | 0.2968530 | 0.3619284 | 0.3521040 | 0.4270280 | 0.478045 |
6 | mean2_no_refine(x[idxs]) | 0.284739 | 0.3253185 | 0.3742937 | 0.3837795 | 0.4244205 | 0.451456 |
5 | mean2(x[idxs]) | 0.354564 | 0.4028905 | 0.4526132 | 0.4672430 | 0.4956540 | 0.749004 |
3 | mean2(x, idxs) | 0.393542 | 0.4639200 | 0.6129403 | 0.5469265 | 0.5587500 | 10.399488 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 1.788088 | 1.800385 | 1.747953 | 1.796579 | 1.770636 | 1.408845 |
4 | mean2_no_refine(x, idxs) | 2.941896 | 3.228084 | 3.517878 | 3.665764 | 3.947311 | 2.910029 |
6 | mean2_no_refine(x[idxs]) | 3.112208 | 3.537628 | 3.638066 | 3.995539 | 3.923208 | 2.748172 |
5 | mean2(x[idxs]) | 3.875398 | 4.381173 | 4.399318 | 4.864480 | 4.581668 | 4.559452 |
3 | mean2(x, idxs) | 4.301429 | 5.044829 | 5.957668 | 5.694067 | 5.164907 | 63.305360 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5332201 284.8 8529671 455.6 8529671 455.6
Vcells 22434735 171.2 40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.343081 | 1.549252 | 1.578564 | 1.576547 | 1.632972 | 1.918255 |
1 | mean2_x_S | 2.515176 | 2.804453 | 2.870944 | 2.876253 | 2.955961 | 3.323344 |
6 | mean2_no_refine(x[idxs]) | 9.380240 | 10.324032 | 11.127897 | 10.477827 | 10.614484 | 21.379512 |
4 | mean2_no_refine(x, idxs) | 8.200189 | 10.458063 | 10.982563 | 10.562641 | 10.846580 | 29.819252 |
5 | mean2(x[idxs]) | 11.320825 | 11.651995 | 12.412661 | 11.775655 | 11.939690 | 22.736827 |
3 | mean2(x, idxs) | 15.378069 | 15.684134 | 16.370287 | 15.831978 | 16.128079 | 27.183240 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 1.872691 | 1.810198 | 1.818706 | 1.824401 | 1.810172 | 1.732483 |
6 | mean2_no_refine(x[idxs]) | 6.984121 | 6.663882 | 7.049381 | 6.646061 | 6.500099 | 11.145292 |
4 | mean2_no_refine(x, idxs) | 6.105506 | 6.750395 | 6.957314 | 6.699858 | 6.642231 | 15.544989 |
5 | mean2(x[idxs]) | 8.428997 | 7.521046 | 7.863263 | 7.469270 | 7.311630 | 11.852870 |
3 | mean2(x, idxs) | 11.449845 | 10.123682 | 10.370368 | 10.042186 | 9.876516 | 14.170817 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5332294 284.8 8529671 455.6 8529671 455.6
Vcells 31885445 243.3 48582609 370.7 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 10.88876 | 14.49473 | 17.07083 | 15.97592 | 21.50374 | 24.61304 |
1 | mean2_x_S | 18.75323 | 23.55524 | 27.70298 | 25.66344 | 31.49576 | 39.18378 |
4 | mean2_no_refine(x, idxs) | 148.64750 | 170.24358 | 184.80863 | 183.40903 | 190.31554 | 558.94832 |
6 | mean2_no_refine(x[idxs]) | 169.73511 | 179.18399 | 188.45000 | 184.48299 | 196.81973 | 215.57362 |
5 | mean2(x[idxs]) | 178.75786 | 195.58341 | 208.37115 | 206.84077 | 210.96170 | 572.83587 |
3 | mean2(x, idxs) | 281.16566 | 311.13864 | 321.84314 | 322.05485 | 334.64647 | 357.05475 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 1.722256 | 1.62509 | 1.622826 | 1.606383 | 1.464665 | 1.591993 |
4 | mean2_no_refine(x, idxs) | 13.651464 | 11.74521 | 10.825991 | 11.480344 | 8.850348 | 22.709440 |
6 | mean2_no_refine(x[idxs]) | 15.588104 | 12.36201 | 11.039300 | 11.547568 | 9.152815 | 8.758513 |
5 | mean2(x[idxs]) | 16.416734 | 13.49342 | 12.206270 | 12.947036 | 9.810467 | 23.273675 |
3 | mean2(x, idxs) | 25.821644 | 21.46564 | 18.853399 | 20.158771 | 15.562248 | 14.506731 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 2.9 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('mean2_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 19:23:16 (+0200 UTC). Powered by RSP.