matrixStats.benchmarks


mean2() benchmarks on subsetted computation

This report benchmark the performance of mean2() on subsetted computation.

Data type “integer”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5343782 285.4    8529671 455.6   8529671 455.6
Vcells 16994035 129.7   33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 mean2_x_S 0.002617 0.0026800 0.0027879 0.0027855 0.0028580 0.003139
2 mean2_x_S_no_refine 0.002625 0.0026925 0.0028074 0.0027875 0.0028820 0.003789
6 mean2_no_refine(x[idxs]) 0.005270 0.0054265 0.0069546 0.0055245 0.0056670 0.145760
5 mean2(x[idxs]) 0.005305 0.0054455 0.0055669 0.0055265 0.0056240 0.006907
4 mean2_no_refine(x, idxs) 0.005361 0.0054705 0.0056265 0.0055845 0.0057365 0.006292
3 mean2(x, idxs) 0.005354 0.0055135 0.0056912 0.0056400 0.0058250 0.007782
  expr min lq mean median uq max
1 mean2_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 mean2_x_S_no_refine 1.003057 1.004664 1.006962 1.000718 1.008398 1.207072
6 mean2_no_refine(x[idxs]) 2.013756 2.024813 2.494516 1.983306 1.982855 46.435170
5 mean2(x[idxs]) 2.027130 2.031903 1.996786 1.984024 1.967810 2.200382
4 mean2_no_refine(x, idxs) 2.048529 2.041231 2.018142 2.004847 2.007173 2.004460
3 mean2(x, idxs) 2.045854 2.057276 2.041364 2.024771 2.038139 2.479134

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5331508 284.8    8529671 455.6   8529671 455.6
Vcells 15833074 120.8   33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 mean2_x_S 0.010794 0.0114820 0.0122459 0.0122445 0.0127205 0.013998
2 mean2_x_S_no_refine 0.010723 0.0114335 0.0123639 0.0123120 0.0130385 0.015634
6 mean2_no_refine(x[idxs]) 0.029503 0.0311895 0.0333866 0.0328465 0.0348800 0.046098
5 mean2(x[idxs]) 0.028908 0.0317200 0.0335386 0.0335125 0.0349180 0.049548
4 mean2_no_refine(x, idxs) 0.030674 0.0328510 0.0362676 0.0351895 0.0389210 0.070046
3 mean2(x, idxs) 0.030257 0.0322325 0.0359282 0.0357235 0.0380070 0.055797
  expr min lq mean median uq max
1 mean2_x_S 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 mean2_x_S_no_refine 0.9934223 0.995776 1.009643 1.005513 1.024999 1.116874
6 mean2_no_refine(x[idxs]) 2.7332777 2.716382 2.726360 2.682551 2.742031 3.293185
5 mean2(x[idxs]) 2.6781545 2.762585 2.738773 2.736943 2.745018 3.539649
4 mean2_no_refine(x, idxs) 2.8417639 2.861087 2.961620 2.873903 3.059707 5.004001
3 mean2(x, idxs) 2.8031314 2.807220 2.933910 2.917514 2.987854 3.986069

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5331607 284.8    8529671 455.6   8529671 455.6
Vcells 15896652 121.3   33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 mean2_x_S_no_refine 0.073527 0.0756660 0.0851851 0.0783055 0.0925870 0.129134
1 mean2_x_S 0.073509 0.0756385 0.0837340 0.0794795 0.0897670 0.117633
6 mean2_no_refine(x[idxs]) 0.221539 0.2335015 0.2773580 0.2771705 0.3177650 0.374438
5 mean2(x[idxs]) 0.221734 0.2386475 0.2804623 0.2785185 0.3143685 0.457560
3 mean2(x, idxs) 0.249248 0.2649270 0.3884439 0.2992800 0.4184140 6.716517
4 mean2_no_refine(x, idxs) 0.245279 0.2639460 0.3185506 0.3024775 0.3546150 0.434245
  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.0000000 1.0000000 1.0000000 1.000000 1.0000000 1.0000000
1 mean2_x_S 0.9997552 0.9996366 0.9829651 1.014993 0.9695422 0.9109375
6 mean2_no_refine(x[idxs]) 3.0130292 3.0859501 3.2559449 3.539604 3.4320693 2.8996082
5 mean2(x[idxs]) 3.0156813 3.1539595 3.2923877 3.556819 3.3953849 3.5432961
3 mean2(x, idxs) 3.3898840 3.5012687 4.5599985 3.821954 4.5191442 52.0119953
4 mean2_no_refine(x, idxs) 3.3359038 3.4883039 3.7395113 3.862787 3.8300733 3.3627472

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5331706 284.8    8529671 455.6   8529671 455.6
Vcells 16526934 126.1   33615701 256.5 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 mean2_x_S 0.888980 0.970562 0.9870926 0.9813695 1.004870 1.153251
2 mean2_x_S_no_refine 0.908760 0.970577 0.9978088 0.9825275 1.019047 1.260782
6 mean2_no_refine(x[idxs]) 3.841791 4.892468 5.3651200 5.0987125 5.278500 16.702025
5 mean2(x[idxs]) 3.957112 4.925172 5.1072061 5.1187365 5.339589 6.302222
3 mean2(x, idxs) 4.279667 6.379384 6.5634663 6.5185200 6.940049 16.112859
4 mean2_no_refine(x, idxs) 4.347253 6.408241 7.2835367 6.6077075 7.058704 17.249946
  expr min lq mean median uq max
1 mean2_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 mean2_x_S_no_refine 1.022250 1.000015 1.010856 1.001180 1.014108 1.093242
6 mean2_no_refine(x[idxs]) 4.321572 5.040860 5.435275 5.195507 5.252919 14.482558
5 mean2(x[idxs]) 4.451295 5.074556 5.173989 5.215911 5.313711 5.464744
3 mean2(x, idxs) 4.814132 6.572876 6.649292 6.642269 6.906415 13.971684
4 mean2_no_refine(x, idxs) 4.890158 6.602609 7.378778 6.733149 7.024495 14.957668

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000000 vector

> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5331805 284.8    8529671 455.6   8529671 455.6
Vcells 22827611 174.2   40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 mean2_x_S 8.963665 12.25291 13.42115 13.53164 14.27329 17.88091
2 mean2_x_S_no_refine 9.692483 12.69796 13.90028 13.56586 16.41305 17.10707
3 mean2(x, idxs) 116.771360 126.50532 132.13719 133.08509 137.16898 144.61707
4 mean2_no_refine(x, idxs) 117.632574 128.45040 133.48622 133.49306 139.71935 147.40210
6 mean2_no_refine(x[idxs]) 124.669728 135.14550 143.87622 141.00332 144.38891 523.71038
5 mean2(x[idxs]) 124.945997 136.12857 140.59447 141.01150 144.73820 153.55588
  expr min lq mean median uq max
1 mean2_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 mean2_x_S_no_refine 1.081308 1.036323 1.035700 1.002529 1.149913 0.9567224
3 mean2(x, idxs) 13.027189 10.324515 9.845444 9.835104 9.610185 8.0877901
4 mean2_no_refine(x, idxs) 13.123268 10.483260 9.945958 9.865253 9.788866 8.2435443
6 mean2_no_refine(x[idxs]) 13.908343 11.029669 10.720110 10.420268 10.116020 29.2887940
5 mean2(x[idxs]) 13.939164 11.109901 10.475589 10.420872 10.140491 8.5876980

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5331907 284.8    8529671 455.6   8529671 455.6
Vcells 21384601 163.2   40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 mean2_x_S_no_refine 0.002801 0.0028840 0.0032010 0.0029540 0.0030335 0.017288
1 mean2_x_S 0.003950 0.0040340 0.0041943 0.0040870 0.0042330 0.010007
6 mean2_no_refine(x[idxs]) 0.005062 0.0053085 0.0057585 0.0054570 0.0056485 0.023367
4 mean2_no_refine(x, idxs) 0.005434 0.0056365 0.0058133 0.0057765 0.0059000 0.006759
5 mean2(x[idxs]) 0.006200 0.0064090 0.0066228 0.0065635 0.0067735 0.007747
3 mean2(x, idxs) 0.006665 0.0068155 0.0070322 0.0069650 0.0071795 0.009142
  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 mean2_x_S 1.410211 1.398752 1.310285 1.383548 1.395418 0.5788408
6 mean2_no_refine(x[idxs]) 1.807212 1.840673 1.798955 1.847326 1.862040 1.3516312
4 mean2_no_refine(x, idxs) 1.940021 1.954404 1.816084 1.955484 1.944948 0.3909648
5 mean2(x[idxs]) 2.213495 2.222261 2.068971 2.221903 2.232899 0.4481143
3 mean2(x, idxs) 2.379507 2.363211 2.196858 2.357820 2.366738 0.5288061

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5332003 284.8    8529671 455.6   8529671 455.6
Vcells 21394560 163.3   40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 mean2_x_S_no_refine 0.013189 0.0136025 0.0146243 0.0143285 0.0153315 0.019333
1 mean2_x_S 0.022512 0.0229240 0.0248455 0.0244275 0.0261100 0.043589
6 mean2_no_refine(x[idxs]) 0.029430 0.0310335 0.0334698 0.0323710 0.0358140 0.046852
4 mean2_no_refine(x, idxs) 0.032794 0.0334905 0.0372509 0.0355420 0.0391355 0.076246
5 mean2(x[idxs]) 0.038999 0.0409790 0.0440330 0.0437330 0.0466370 0.059871
3 mean2(x, idxs) 0.043297 0.0444420 0.0484117 0.0470765 0.0514175 0.067115
  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 mean2_x_S 1.706877 1.685278 1.698924 1.704819 1.703030 2.254642
6 mean2_no_refine(x[idxs]) 2.231405 2.281456 2.288645 2.259204 2.335975 2.423421
4 mean2_no_refine(x, idxs) 2.486466 2.462084 2.547199 2.480511 2.552620 3.943827
5 mean2(x[idxs]) 2.956934 3.012608 3.010952 3.052169 3.041907 3.096829
3 mean2(x, idxs) 3.282811 3.267193 3.310364 3.285515 3.353716 3.471525

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5332102 284.8    8529671 455.6   8529671 455.6
Vcells 21489668 164.0   40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 mean2_x_S_no_refine 0.091491 0.0919595 0.1028826 0.0960520 0.1081820 0.164275
1 mean2_x_S 0.163594 0.1655625 0.1798339 0.1725650 0.1915510 0.231438
4 mean2_no_refine(x, idxs) 0.269157 0.2968530 0.3619284 0.3521040 0.4270280 0.478045
6 mean2_no_refine(x[idxs]) 0.284739 0.3253185 0.3742937 0.3837795 0.4244205 0.451456
5 mean2(x[idxs]) 0.354564 0.4028905 0.4526132 0.4672430 0.4956540 0.749004
3 mean2(x, idxs) 0.393542 0.4639200 0.6129403 0.5469265 0.5587500 10.399488
  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 mean2_x_S 1.788088 1.800385 1.747953 1.796579 1.770636 1.408845
4 mean2_no_refine(x, idxs) 2.941896 3.228084 3.517878 3.665764 3.947311 2.910029
6 mean2_no_refine(x[idxs]) 3.112208 3.537628 3.638066 3.995539 3.923208 2.748172
5 mean2(x[idxs]) 3.875398 4.381173 4.399318 4.864480 4.581668 4.559452
3 mean2(x, idxs) 4.301429 5.044829 5.957668 5.694067 5.164907 63.305360

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5332201 284.8    8529671 455.6   8529671 455.6
Vcells 22434735 171.2   40418841 308.4 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.343081 1.549252 1.578564 1.576547 1.632972 1.918255
1 mean2_x_S 2.515176 2.804453 2.870944 2.876253 2.955961 3.323344
6 mean2_no_refine(x[idxs]) 9.380240 10.324032 11.127897 10.477827 10.614484 21.379512
4 mean2_no_refine(x, idxs) 8.200189 10.458063 10.982563 10.562641 10.846580 29.819252
5 mean2(x[idxs]) 11.320825 11.651995 12.412661 11.775655 11.939690 22.736827
3 mean2(x, idxs) 15.378069 15.684134 16.370287 15.831978 16.128079 27.183240
  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 mean2_x_S 1.872691 1.810198 1.818706 1.824401 1.810172 1.732483
6 mean2_no_refine(x[idxs]) 6.984121 6.663882 7.049381 6.646061 6.500099 11.145292
4 mean2_no_refine(x, idxs) 6.105506 6.750395 6.957314 6.699858 6.642231 15.544989
5 mean2(x[idxs]) 8.428997 7.521046 7.863263 7.469270 7.311630 11.852870
3 mean2(x, idxs) 11.449845 10.123682 10.370368 10.042186 9.876516 14.170817

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000000 vector

> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb)  max used  (Mb)
Ncells  5332294 284.8    8529671 455.6   8529671 455.6
Vcells 31885445 243.3   48582609 370.7 101881463 777.3
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE), 
+     `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x, 
+         idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs], 
+         refine = FALSE), unit = "ms")

Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 mean2_x_S_no_refine 10.88876 14.49473 17.07083 15.97592 21.50374 24.61304
1 mean2_x_S 18.75323 23.55524 27.70298 25.66344 31.49576 39.18378
4 mean2_no_refine(x, idxs) 148.64750 170.24358 184.80863 183.40903 190.31554 558.94832
6 mean2_no_refine(x[idxs]) 169.73511 179.18399 188.45000 184.48299 196.81973 215.57362
5 mean2(x[idxs]) 178.75786 195.58341 208.37115 206.84077 210.96170 572.83587
3 mean2(x, idxs) 281.16566 311.13864 321.84314 322.05485 334.64647 357.05475
  expr min lq mean median uq max
2 mean2_x_S_no_refine 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000
1 mean2_x_S 1.722256 1.62509 1.622826 1.606383 1.464665 1.591993
4 mean2_no_refine(x, idxs) 13.651464 11.74521 10.825991 11.480344 8.850348 22.709440
6 mean2_no_refine(x[idxs]) 15.588104 12.36201 11.039300 11.547568 9.152815 8.758513
5 mean2(x[idxs]) 16.416734 13.49342 12.206270 12.947036 9.810467 23.273675
3 mean2(x, idxs) 25.821644 21.46564 18.853399 20.158771 15.562248 14.506731

Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 2.9 mins.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('mean2_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 19:23:16 (+0200 UTC). Powered by RSP.