This report benchmark the performance of madDiff() on subsetted computation.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5342018 285.3 8529671 455.6 8529671 455.6
Vcells 16991412 129.7 34090130 260.1 60562128 462.1
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 0.074106 | 0.0763210 | 0.0817296 | 0.0783660 | 0.0841565 | 0.107667 |
3 | madDiff(x[idxs]) | 0.077065 | 0.0800100 | 0.0909396 | 0.0836455 | 0.0953205 | 0.430596 |
2 | madDiff(x, idxs) | 0.076762 | 0.0804655 | 0.0864272 | 0.0840825 | 0.0909930 | 0.116771 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | madDiff(x[idxs]) | 1.039929 | 1.048335 | 1.112688 | 1.067370 | 1.132658 | 3.999331 |
2 | madDiff(x, idxs) | 1.035841 | 1.054304 | 1.057477 | 1.072946 | 1.081236 | 1.084557 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5329797 284.7 8529671 455.6 8529671 455.6
Vcells 15829452 120.8 34090130 260.1 60562128 462.1
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 0.241514 | 0.244577 | 0.2782568 | 0.255501 | 0.3043530 | 0.409451 |
3 | madDiff(x[idxs]) | 0.255587 | 0.258550 | 0.2899554 | 0.268064 | 0.3140205 | 0.526827 |
2 | madDiff(x, idxs) | 0.256066 | 0.258769 | 0.2953597 | 0.276357 | 0.3311450 | 0.456839 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | madDiff(x[idxs]) | 1.058270 | 1.057131 | 1.042042 | 1.049170 | 1.031764 | 1.286667 |
2 | madDiff(x, idxs) | 1.060253 | 1.058027 | 1.061464 | 1.081628 | 1.088029 | 1.115735 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5329869 284.7 8529671 455.6 8529671 455.6
Vcells 15893012 121.3 34090130 260.1 60562128 462.1
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 2.137499 | 2.192357 | 2.424793 | 2.251765 | 2.441035 | 8.505536 |
2 | madDiff(x, idxs) | 2.287631 | 2.346812 | 2.540693 | 2.401973 | 2.454836 | 8.973306 |
3 | madDiff(x[idxs]) | 2.282479 | 2.337624 | 2.778587 | 2.405591 | 2.657550 | 16.775502 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | madDiff(x, idxs) | 1.070237 | 1.070452 | 1.047798 | 1.066707 | 1.005654 | 1.054996 |
3 | madDiff(x[idxs]) | 1.067827 | 1.066261 | 1.145907 | 1.068313 | 1.088698 | 1.972304 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5329941 284.7 8529671 455.6 8529671 455.6
Vcells 16523061 126.1 34090130 260.1 60562128 462.1
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 19.07366 | 19.31225 | 21.73484 | 19.95797 | 21.95595 | 33.60129 |
2 | madDiff(x, idxs) | 22.10209 | 22.70318 | 26.13706 | 24.01666 | 30.41792 | 45.68622 |
3 | madDiff(x[idxs]) | 22.10672 | 22.82510 | 29.51516 | 24.08327 | 30.00760 | 388.78462 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | madDiff(x, idxs) | 1.158776 | 1.175585 | 1.202542 | 1.203362 | 1.385406 | 1.359657 |
3 | madDiff(x[idxs]) | 1.159018 | 1.181898 | 1.357965 | 1.206699 | 1.366718 | 11.570528 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5330013 284.7 8529671 455.6 8529671 455.6
Vcells 22823109 174.2 40988156 312.8 60562128 462.1
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 219.2115 | 230.8682 | 271.2571 | 243.5861 | 255.2630 | 633.8320 |
2 | madDiff(x, idxs) | 349.0237 | 356.1255 | 398.2568 | 368.0111 | 379.9252 | 763.0911 |
3 | madDiff(x[idxs]) | 344.5653 | 363.9755 | 439.2488 | 379.6998 | 397.2683 | 806.7670 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | madDiff(x, idxs) | 1.592178 | 1.542549 | 1.468189 | 1.510805 | 1.488368 | 1.203933 |
3 | madDiff(x[idxs]) | 1.571840 | 1.576552 | 1.619308 | 1.558791 | 1.556310 | 1.272840 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5330088 284.7 8529671 455.6 8529671 455.6
Vcells 21380310 163.2 71118732 542.6 68324404 521.3
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 0.088639 | 0.092148 | 0.0993094 | 0.0950780 | 0.1053155 | 0.129918 |
3 | madDiff(x[idxs]) | 0.090911 | 0.095238 | 0.1061634 | 0.1013615 | 0.1124420 | 0.245817 |
2 | madDiff(x, idxs) | 0.091444 | 0.095935 | 0.1048928 | 0.1015975 | 0.1131920 | 0.130759 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | madDiff(x[idxs]) | 1.025632 | 1.033533 | 1.069017 | 1.066088 | 1.067668 | 1.892094 |
2 | madDiff(x, idxs) | 1.031645 | 1.041097 | 1.056223 | 1.068570 | 1.074790 | 1.006473 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5330157 284.7 8529671 455.6 8529671 455.6
Vcells 21389802 163.2 71118732 542.6 68324404 521.3
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 0.283091 | 0.2924375 | 0.3362268 | 0.3026925 | 0.362518 | 0.522399 |
3 | madDiff(x[idxs]) | 0.297945 | 0.3061445 | 0.3409607 | 0.3145700 | 0.366660 | 0.628820 |
2 | madDiff(x, idxs) | 0.297125 | 0.3060925 | 0.3508024 | 0.3204135 | 0.388525 | 0.511688 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
3 | madDiff(x[idxs]) | 1.052471 | 1.046872 | 1.014080 | 1.039240 | 1.011426 | 1.2037159 |
2 | madDiff(x, idxs) | 1.049574 | 1.046694 | 1.043351 | 1.058545 | 1.071740 | 0.9794965 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5330229 284.7 8529671 455.6 8529671 455.6
Vcells 21484682 164.0 71118732 542.6 68324404 521.3
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 2.852060 | 3.100382 | 3.343521 | 3.160017 | 3.733188 | 4.649720 |
2 | madDiff(x, idxs) | 3.073497 | 3.309583 | 3.651664 | 3.369550 | 3.501716 | 10.416782 |
3 | madDiff(x[idxs]) | 3.078086 | 3.308984 | 3.658173 | 3.406265 | 4.239719 | 4.533597 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
2 | madDiff(x, idxs) | 1.077641 | 1.067476 | 1.092161 | 1.066307 | 0.9379962 | 2.2403031 |
3 | madDiff(x[idxs]) | 1.079250 | 1.067282 | 1.094108 | 1.077926 | 1.1356834 | 0.9750258 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5330301 284.7 8529671 455.6 8529671 455.6
Vcells 22430126 171.2 71118732 542.6 71092113 542.4
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 27.44413 | 28.24720 | 30.18858 | 28.85604 | 29.82229 | 53.18479 |
3 | madDiff(x[idxs]) | 35.93065 | 38.09962 | 39.80374 | 38.80446 | 39.87832 | 48.79393 |
2 | madDiff(x, idxs) | 36.86829 | 38.58991 | 40.78729 | 39.40539 | 40.67034 | 50.55616 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
3 | madDiff(x[idxs]) | 1.309229 | 1.348793 | 1.318503 | 1.344760 | 1.337198 | 0.9174415 |
2 | madDiff(x, idxs) | 1.343395 | 1.366150 | 1.351084 | 1.365586 | 1.363757 | 0.9505755 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5330373 284.7 8529671 455.6 8529671 455.6
Vcells 31880174 243.3 71118732 542.6 71092113 542.4
> stats <- microbenchmark(madDiff_x_S = madDiff(x_S), `madDiff(x, idxs)` = madDiff(x, idxs = idxs),
+ `madDiff(x[idxs])` = madDiff(x[idxs]), unit = "ms")
Table: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 308.9380 | 333.8033 | 374.0135 | 350.9787 | 365.4677 | 738.1890 |
3 | madDiff(x[idxs]) | 475.1683 | 503.4658 | 552.2412 | 515.1401 | 524.8876 | 891.8701 |
2 | madDiff(x, idxs) | 469.0873 | 500.8675 | 559.6173 | 517.0455 | 530.4690 | 906.0613 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | madDiff_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | madDiff(x[idxs]) | 1.538070 | 1.508271 | 1.476527 | 1.467725 | 1.436208 | 1.208187 |
2 | madDiff(x, idxs) | 1.518387 | 1.500487 | 1.496249 | 1.473153 | 1.451480 | 1.227411 |
Figure: Benchmarking of madDiff_x_S(), madDiff(x, idxs)() and madDiff(x[idxs])() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 4.88 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('madDiff_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 19:19:49 (+0200 UTC). Powered by RSP.