matrixStats.benchmarks


madDiff() benchmarks

This report benchmark the performance of madDiff() against alternative methods.

Alternative methods

Data type “integer”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]

Results

n = 1000 vector

All elements

> x <- data[["n = 1000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 0.017752 0.0214995 0.0241288 0.023748 0.0259275 0.039277
1 madDiff 0.088629 0.0949025 0.1046152 0.103037 0.1121460 0.150218
2 mad 0.105680 0.1136725 0.1237513 0.122174 0.1292590 0.270952
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 madDiff 4.992621 4.414172 4.335696 4.338765 4.325369 3.824579
2 mad 5.953132 5.287216 5.128775 5.144602 4.985402 6.898490

Figure: Benchmarking of madDiff(), mad() and diff() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

All elements

> x <- data[["n = 10000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 0.113027 0.1183590 0.1317600 0.1249735 0.1411005 0.213902
1 madDiff 0.324380 0.3301435 0.3712612 0.3364710 0.4056640 0.638642
2 mad 0.411193 0.4192715 0.4678962 0.4313300 0.5069095 0.680386
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 madDiff 2.869934 2.789340 2.817708 2.692339 2.875000 2.985676
2 mad 3.638007 3.542371 3.551125 3.451372 3.592542 3.180830

Figure: Benchmarking of madDiff(), mad() and diff() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

All elements

> x <- data[["n = 100000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 1.036132 1.130519 1.300537 1.172840 1.255360 7.771759
1 madDiff 2.575734 2.813886 3.053933 2.850616 2.926643 9.541398
2 mad 3.337370 3.567168 3.835025 3.658603 3.796289 10.060741
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 madDiff 2.485913 2.489021 2.348209 2.430524 2.331318 1.227701
2 mad 3.220989 3.155337 2.948801 3.119440 3.024064 1.294526

Figure: Benchmarking of madDiff(), mad() and diff() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

All elements

> x <- data[["n = 1000000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 11.02840 11.65005 17.75196 12.08700 18.66433 392.88244
1 madDiff 31.70395 33.02597 36.01248 34.33064 40.07227 50.52308
2 mad 34.74192 36.15372 39.83439 37.17157 44.77725 58.22014
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 madDiff 2.874754 2.834836 2.028647 2.840294 2.146998 0.1285959
2 mad 3.150222 3.103311 2.243943 3.075334 2.399082 0.1481872

Figure: Benchmarking of madDiff(), mad() and diff() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]

Results

n = 1000 vector

All elements

> x <- data[["n = 1000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 0.013201 0.0147700 0.0162467 0.0159435 0.016973 0.029938
1 madDiff 0.106338 0.1109705 0.1200912 0.1163020 0.126430 0.165608
2 mad 0.113455 0.1201745 0.1314006 0.1279825 0.137668 0.270726
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 madDiff 8.055299 7.513236 7.391731 7.294634 7.448889 5.531699
2 mad 8.594425 8.136391 8.087838 8.027252 8.111000 9.042889

Figure: Benchmarking of madDiff(), mad() and diff() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

All elements

> x <- data[["n = 10000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 0.063052 0.0658795 0.0720300 0.0700025 0.0759765 0.114779
2 mad 0.441619 0.4511230 0.4968053 0.4611525 0.5256760 0.782934
1 madDiff 0.504355 0.5091125 0.5690519 0.5213725 0.6086355 0.936383
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 mad 7.004044 6.847699 6.897198 6.587658 6.918929 6.821230
1 madDiff 7.999033 7.727935 7.900204 7.447913 8.010839 8.158139

Figure: Benchmarking of madDiff(), mad() and diff() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

All elements

> x <- data[["n = 100000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 0.519885 0.570392 0.6985906 0.6014705 0.651661 6.399512
1 madDiff 3.394157 3.652373 4.0606775 3.7422355 3.987932 10.796630
2 mad 4.276920 4.456988 4.8640088 4.6598885 4.834231 11.028984
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 madDiff 6.528669 6.403268 5.812671 6.221811 6.119643 1.687102
2 mad 8.226665 7.813903 6.962603 7.747493 7.418322 1.723410

Figure: Benchmarking of madDiff(), mad() and diff() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

All elements

> x <- data[["n = 1000000"]]
> stats <- microbenchmark(madDiff = madDiff(x), mad = mad(x), diff = diff(x), unit = "ms")

Table: Benchmarking of madDiff(), mad() and diff() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 diff 6.691625 7.436153 14.86925 8.213351 14.24587 388.54273
2 mad 36.656780 39.197105 43.52137 42.272902 47.81036 53.08252
1 madDiff 37.511064 39.747759 48.87698 44.476872 49.17636 426.27070
  expr min lq mean median uq max
3 diff 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 mad 5.478009 5.271154 2.926939 5.146852 3.356086 0.1366195
1 madDiff 5.605673 5.345205 3.287119 5.415192 3.451974 1.0971012

Figure: Benchmarking of madDiff(), mad() and diff() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 29.99 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('madDiff')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 19:20:20 (+0200 UTC). Powered by RSP.