matrixStats.benchmarks


logSumExp() benchmarks on subsetted computation

This report benchmark the performance of logSumExp() on subsetted computation.

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5341768 285.3    8529671 455.6  8529671 455.6
Vcells 11753385  89.7   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 0.015591 0.0158745 0.0163376 0.0163600 0.0165105 0.017843
3 logSumExp(x[idxs]) 0.018075 0.0188060 0.0192830 0.0189735 0.0196900 0.038997
2 logSumExp(x, idxs) 0.018860 0.0198025 0.0204520 0.0200145 0.0206035 0.034614
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 1.159323 1.184667 1.180281 1.159749 1.192574 2.185563
2 logSumExp(x, idxs) 1.209672 1.247441 1.251834 1.223380 1.247903 1.939920

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5328711 284.6    8529671 455.6  8529671 455.6
Vcells 11386811  86.9   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 0.102405 0.1153345 0.1293270 0.1244830 0.1407065 0.172723
3 logSumExp(x[idxs]) 0.120531 0.1327280 0.1463184 0.1438555 0.1542785 0.224230
2 logSumExp(x, idxs) 0.135196 0.1481720 0.1669454 0.1624540 0.1813390 0.224668
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 1.177003 1.150809 1.131384 1.155624 1.096456 1.298206
2 logSumExp(x, idxs) 1.320209 1.284715 1.290879 1.305030 1.288775 1.300742

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5328783 284.6    8529671 455.6  8529671 455.6
Vcells 11481871  87.6   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 0.963657 1.014990 1.050716 1.029772 1.048861 1.561737
3 logSumExp(x[idxs]) 1.146242 1.194862 1.278392 1.232443 1.349690 1.931844
2 logSumExp(x, idxs) 1.602609 1.699938 1.767231 1.741054 1.848653 2.109960
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 1.189471 1.177215 1.216687 1.196811 1.286815 1.236984
2 logSumExp(x, idxs) 1.663049 1.674831 1.681931 1.690717 1.762534 1.351034

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5328855 284.6    8529671 455.6  8529671 455.6
Vcells 12426920  94.9   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 9.649558 11.47577 12.70166 12.55980 14.13723 16.59399
3 logSumExp(x[idxs]) 17.076022 20.58465 22.11247 21.81947 23.81086 30.47616
2 logSumExp(x, idxs) 38.975856 43.54822 47.22513 45.88667 48.54235 72.45369
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 1.769617 1.793749 1.740911 1.737247 1.684266 1.836579
2 logSumExp(x, idxs) 4.039134 3.794798 3.718028 3.653456 3.433652 4.366262

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 12.61 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('logSumExp_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 19:14:45 (+0200 UTC). Powered by RSP.