This report benchmark the performance of logSumExp() on subsetted computation.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5341768 285.3 8529671 455.6 8529671 455.6
Vcells 11753385 89.7 34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs),
+ `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")
Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 0.015591 | 0.0158745 | 0.0163376 | 0.0163600 | 0.0165105 | 0.017843 |
3 | logSumExp(x[idxs]) | 0.018075 | 0.0188060 | 0.0192830 | 0.0189735 | 0.0196900 | 0.038997 |
2 | logSumExp(x, idxs) | 0.018860 | 0.0198025 | 0.0204520 | 0.0200145 | 0.0206035 | 0.034614 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | logSumExp(x[idxs]) | 1.159323 | 1.184667 | 1.180281 | 1.159749 | 1.192574 | 2.185563 |
2 | logSumExp(x, idxs) | 1.209672 | 1.247441 | 1.251834 | 1.223380 | 1.247903 | 1.939920 |
Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5328711 284.6 8529671 455.6 8529671 455.6
Vcells 11386811 86.9 34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs),
+ `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")
Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 0.102405 | 0.1153345 | 0.1293270 | 0.1244830 | 0.1407065 | 0.172723 |
3 | logSumExp(x[idxs]) | 0.120531 | 0.1327280 | 0.1463184 | 0.1438555 | 0.1542785 | 0.224230 |
2 | logSumExp(x, idxs) | 0.135196 | 0.1481720 | 0.1669454 | 0.1624540 | 0.1813390 | 0.224668 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | logSumExp(x[idxs]) | 1.177003 | 1.150809 | 1.131384 | 1.155624 | 1.096456 | 1.298206 |
2 | logSumExp(x, idxs) | 1.320209 | 1.284715 | 1.290879 | 1.305030 | 1.288775 | 1.300742 |
Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5328783 284.6 8529671 455.6 8529671 455.6
Vcells 11481871 87.6 34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs),
+ `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")
Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 0.963657 | 1.014990 | 1.050716 | 1.029772 | 1.048861 | 1.561737 |
3 | logSumExp(x[idxs]) | 1.146242 | 1.194862 | 1.278392 | 1.232443 | 1.349690 | 1.931844 |
2 | logSumExp(x, idxs) | 1.602609 | 1.699938 | 1.767231 | 1.741054 | 1.848653 | 2.109960 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | logSumExp(x[idxs]) | 1.189471 | 1.177215 | 1.216687 | 1.196811 | 1.286815 | 1.236984 |
2 | logSumExp(x, idxs) | 1.663049 | 1.674831 | 1.681931 | 1.690717 | 1.762534 | 1.351034 |
Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5328855 284.6 8529671 455.6 8529671 455.6
Vcells 12426920 94.9 34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs),
+ `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")
Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 9.649558 | 11.47577 | 12.70166 | 12.55980 | 14.13723 | 16.59399 |
3 | logSumExp(x[idxs]) | 17.076022 | 20.58465 | 22.11247 | 21.81947 | 23.81086 | 30.47616 |
2 | logSumExp(x, idxs) | 38.975856 | 43.54822 | 47.22513 | 45.88667 | 48.54235 | 72.45369 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | logSumExp_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | logSumExp(x[idxs]) | 1.769617 | 1.793749 | 1.740911 | 1.737247 | 1.684266 | 1.836579 |
2 | logSumExp(x, idxs) | 4.039134 | 3.794798 | 3.718028 | 3.653456 | 3.433652 | 4.366262 |
Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 12.61 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('logSumExp_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 19:14:45 (+0200 UTC). Powered by RSP.