matrixStats.benchmarks


logSumExp() benchmarks

This report benchmark the performance of logSumExp() against alternative methods.

Alternative methods

where

> logSumExp_R <- function(lx, ...) {
+     iMax <- which.max(lx)
+     log1p(sum(exp(lx[-iMax] - lx[iMax]))) + lx[iMax]
+ }

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5331406 284.8    8529671 455.6  8529671 455.6
Vcells 13561677 103.5   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")

Table: Benchmarking of logSumExp() and logSumExp_R() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp 0.021816 0.0227330 0.0233099 0.0230455 0.0237100 0.040055
2 logSumExp_R 0.027199 0.0282075 0.0292453 0.0287040 0.0292425 0.054647
  expr min lq mean median uq max
1 logSumExp 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000
2 logSumExp_R 1.246746 1.240817 1.254632 1.245536 1.23334 1.364299

Figure: Benchmarking of logSumExp() and logSumExp_R() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5329178 284.7    8529671 455.6  8529671 455.6
Vcells 11376728  86.8   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")

Table: Benchmarking of logSumExp() and logSumExp_R() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp 0.158267 0.169690 0.1875225 0.180102 0.204260 0.271811
2 logSumExp_R 0.181882 0.194341 0.2114098 0.206124 0.227409 0.287387
  expr min lq mean median uq max
1 logSumExp 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
2 logSumExp_R 1.14921 1.145271 1.127384 1.144485 1.113331 1.057305

Figure: Benchmarking of logSumExp() and logSumExp_R() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5329241 284.7    8529671 455.6  8529671 455.6
Vcells 11376770  86.8   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")

Table: Benchmarking of logSumExp() and logSumExp_R() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp 1.379849 1.466273 1.53948 1.506045 1.546134 2.092337
2 logSumExp_R 1.578353 1.734569 2.05354 1.868164 2.255320 8.385314
  expr min lq mean median uq max
1 logSumExp 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 logSumExp_R 1.143859 1.182979 1.333918 1.240444 1.458683 4.007631

Figure: Benchmarking of logSumExp() and logSumExp_R() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5329304 284.7    8529671 455.6  8529671 455.6
Vcells 11377325  86.9   34090130 260.1 60562128 462.1
> stats <- microbenchmark(logSumExp = logSumExp(x), logSumExp_R = logSumExp_R(x), unit = "ms")

Table: Benchmarking of logSumExp() and logSumExp_R() on n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp 14.12011 15.33734 15.43717 15.47193 15.56384 20.06469
2 logSumExp_R 20.44286 23.18112 24.12157 23.37133 23.66989 31.42130
  expr min lq mean median uq max
1 logSumExp 1.000000 1.000000 1.000000 1.000000 1.000000 1.000
2 logSumExp_R 1.447783 1.511417 1.562564 1.510563 1.520826 1.566

Figure: Benchmarking of logSumExp() and logSumExp_R() on n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 9.71 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('logSumExp')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 19:14:55 (+0200 UTC). Powered by RSP.