matrixStats.benchmarks


indexByRow() benchmarks

This report benchmark the performance of indexByRow() against alternative methods:

where indexByRow_R1() and indexByRow_R2() are defined as in the Appendix.

Data

> data <- rmatrices(mode = "index")

where rmatrices() is defined in the Appendix.

Results

10x10 matrix

> X <- data[["10x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.001299 0.0015820 0.0018379 0.0017665 0.0018650 0.009142
3 indexByRow_R2 0.005909 0.0065965 0.0068262 0.0067405 0.0069570 0.011900
2 indexByRow_R1 0.006170 0.0066940 0.0071205 0.0068535 0.0070345 0.030130
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 4.548884 4.169722 3.714200 3.815737 3.730295 1.301684
2 indexByRow_R1 4.749808 4.231353 3.874354 3.879706 3.771850 3.295778

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.002651 0.0028410 0.0030917 0.003025 0.0031490 0.010353
2 indexByRow_R1 0.006865 0.0074755 0.0081541 0.007747 0.0081120 0.022752
3 indexByRow_R2 0.008505 0.0091020 0.0095135 0.009320 0.0095155 0.026926
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 2.589589 2.631292 2.637413 2.560992 2.576056 2.197624
3 indexByRow_R2 3.208223 3.203801 3.077106 3.080992 3.021753 2.600792

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.002170 0.0026120 0.0028964 0.0027420 0.0029275 0.015684
3 indexByRow_R2 0.005774 0.0066035 0.0069382 0.0068375 0.0069935 0.015883
2 indexByRow_R1 0.006599 0.0075625 0.0080337 0.0077960 0.0080375 0.026498
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 2.660830 2.528139 2.395483 2.493618 2.388898 1.012688
2 indexByRow_R1 3.041014 2.895291 2.773709 2.843180 2.745517 1.689493

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.014707 0.0157655 0.0169439 0.0166400 0.0177275 0.029435
3 indexByRow_R2 0.071444 0.0762680 0.0818437 0.0799215 0.0864430 0.125276
2 indexByRow_R1 0.072069 0.0779185 0.0825318 0.0814940 0.0860730 0.109465
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 4.857823 4.837652 4.830278 4.802975 4.876209 4.256022
2 indexByRow_R1 4.900320 4.942342 4.870888 4.897476 4.855338 3.718872

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.072910 0.080718 0.0902224 0.0901955 0.096851 0.142181
1 indexByRow 0.078984 0.086229 0.0990125 0.0966650 0.106715 0.137972
3 indexByRow_R2 0.298727 0.318073 0.3661331 0.3549020 0.400063 0.504130
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 indexByRow 1.083308 1.068275 1.097427 1.071727 1.101847 0.9703969
3 indexByRow_R2 4.097202 3.940546 4.058118 3.934808 4.130706 3.5456918

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.052460 0.0580035 0.0624434 0.0613560 0.0660955 0.083137
2 indexByRow_R1 0.084546 0.0917165 0.0991287 0.0963445 0.1056215 0.137692
3 indexByRow_R2 0.167735 0.1826280 0.1959618 0.1942570 0.2084645 0.255780
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.611628 1.581223 1.587497 1.570254 1.598013 1.656206
3 indexByRow_R2 3.197389 3.148569 3.138229 3.166064 3.153989 3.076608

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.013854 0.0152330 0.0164959 0.0160885 0.0170400 0.028068
3 indexByRow_R2 0.069970 0.0760695 0.0806432 0.0794470 0.0847020 0.100642
2 indexByRow_R1 0.070949 0.0755335 0.0830653 0.0817080 0.0853975 0.229437
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 5.050527 4.993731 4.888670 4.938123 4.970775 3.585649
2 indexByRow_R1 5.121192 4.958544 5.035497 5.078659 5.011590 8.174327

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.072431 0.0765610 0.0887787 0.0887680 0.0961470 0.126798
1 indexByRow 0.079205 0.0860535 0.0995028 0.0989155 0.1069795 0.141722
3 indexByRow_R2 0.298908 0.3254525 0.3678825 0.3571470 0.3919725 0.513092
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 indexByRow 1.093524 1.123986 1.120796 1.114315 1.112666 1.117699
3 indexByRow_R2 4.126797 4.250891 4.143814 4.023376 4.076804 4.046531

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.054830 0.0582375 0.0635264 0.0615535 0.0664515 0.087094
2 indexByRow_R1 0.085742 0.0927930 0.1000789 0.0967470 0.1055590 0.148024
3 indexByRow_R2 0.171513 0.1877405 0.2000782 0.1948435 0.2152745 0.249066
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.563779 1.593355 1.575390 1.571755 1.588512 1.699589
3 indexByRow_R2 3.128087 3.223705 3.149527 3.165433 3.239573 2.859738

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.013077 0.0141160 0.0154194 0.0152745 0.0161520 0.031682
3 indexByRow_R2 0.068060 0.0716075 0.0772792 0.0761455 0.0804155 0.118814
2 indexByRow_R1 0.067850 0.0719840 0.0779652 0.0763925 0.0810255 0.113477
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 5.204558 5.072790 5.011807 4.985139 4.978671 3.750205
2 indexByRow_R1 5.188499 5.099462 5.056302 5.001309 5.016438 3.581750

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.071935 0.0802495 0.0911010 0.0915240 0.1001050 0.134227
1 indexByRow 0.079312 0.0863960 0.1006102 0.1005545 0.1104035 0.147812
3 indexByRow_R2 0.292392 0.3170705 0.3595154 0.3465860 0.3822290 0.569033
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 indexByRow 1.102551 1.076592 1.104382 1.098668 1.102877 1.101209
3 indexByRow_R2 4.064669 3.951059 3.946340 3.786832 3.818281 4.239333

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.055208 0.0599835 0.0649007 0.0622565 0.067882 0.089031
2 indexByRow_R1 0.084403 0.0930065 0.1009876 0.0979790 0.108639 0.154516
3 indexByRow_R2 0.168124 0.1821755 0.1951964 0.1903740 0.210525 0.250651
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.528818 1.550535 1.556033 1.573795 1.600410 1.735530
3 indexByRow_R2 3.045283 3.037094 3.007618 3.057898 3.101338 2.815323

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.096349 0.1104665 0.1422542 0.1195365 0.2001225 0.217076
3 indexByRow_R2 0.525708 0.5882020 0.6891502 0.6551905 0.8073100 0.856582
2 indexByRow_R1 0.526196 0.6100990 0.8132235 0.7463895 0.8094195 10.693230
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000
3 indexByRow_R2 5.456289 5.324709 4.844498 5.481091 4.034079 3.94600
2 indexByRow_R1 5.461354 5.522932 5.716692 6.244030 4.044620 49.26031

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.668629 0.6991650 0.7722982 0.717976 0.763533 1.226463
1 indexByRow 0.779617 0.8038425 0.8569607 0.832211 0.891887 1.189537
3 indexByRow_R2 3.013338 3.0963505 3.5061742 3.212157 3.689051 11.740948
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 indexByRow 1.165993 1.149718 1.109624 1.159107 1.168105 0.9698923
3 indexByRow_R2 4.506741 4.428641 4.539923 4.473907 4.831554 9.5730144

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.459125 0.4680545 0.6008779 0.4868045 0.574379 9.133765
2 indexByRow_R1 0.707026 0.7339155 0.8397930 0.7643920 0.990676 1.102537
3 indexByRow_R2 1.483072 1.5023825 1.7314764 1.6263660 1.905382 3.071705
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 indexByRow_R1 1.539942 1.568013 1.397610 1.570224 1.724778 0.1207100
3 indexByRow_R2 3.230214 3.209845 2.881578 3.340902 3.317290 0.3363022

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.099831 0.1119940 0.1373374 0.122643 0.1476510 0.215146
2 indexByRow_R1 0.482236 0.5211715 0.6253584 0.596648 0.7752655 0.846253
3 indexByRow_R2 0.481438 0.5233860 0.6955313 0.602666 0.7354995 6.996129
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 4.830524 4.653566 4.553445 4.864917 5.250662 3.933389
3 indexByRow_R2 4.822530 4.673340 5.064398 4.913986 4.981338 32.518053

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.672735 0.6933185 0.8037763 0.7172435 0.9851695 1.056198
1 indexByRow 0.779524 0.7961490 0.8712172 0.8563715 0.9341550 1.203426
3 indexByRow_R2 3.029157 3.0778145 3.5656160 3.2164275 3.9160485 11.938071
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000
1 indexByRow 1.158739 1.148316 1.083905 1.193976 0.9482175 1.139394
3 indexByRow_R2 4.502749 4.439250 4.436080 4.484429 3.9749997 11.302872

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.458298 0.4623595 0.5152177 0.4865565 0.5682305 0.734950
2 indexByRow_R1 0.704467 0.7249640 0.8760234 0.7468985 0.8710335 7.363990
3 indexByRow_R2 1.487527 1.5049120 1.6739440 1.5726410 1.8617750 2.334786
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.537137 1.567966 1.700298 1.535070 1.532888 10.019716
3 indexByRow_R2 3.245764 3.254853 3.249003 3.232186 3.276443 3.176796

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 18.34 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('indexByRow')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 19:14:31 (+0200 UTC). Powered by RSP.

Local functions

> indexByRow_R1 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+     if (!is.null(idxs)) 
+         x <- x[idxs]
+     as.vector(x)
+ }
> indexByRow_R2 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     if (is.null(idxs)) {
+         x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+         as.vector(x)
+     }     else {
+         idxs <- idxs - 1
+         cols <- idxs%/%dim[2L]
+         rows <- idxs%%dim[2L]
+         cols + dim[1L] * rows + 1L
+     }
+ }
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }