This report benchmark the performance of count() against alternative methods.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5328806 284.6 8529671 455.6 8529671 455.6
Vcells 37453872 285.8 66528939 507.6 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002963 | 0.0031560 | 0.0036359 | 0.003269 | 0.003465 | 0.023826 |
2 | sum(x == value) | 0.004211 | 0.0043245 | 0.0045332 | 0.004403 | 0.004481 | 0.013697 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | sum(x == value) | 1.421195 | 1.370247 | 1.246779 | 1.346895 | 1.293218 | 0.5748762 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326573 284.5 8529671 455.6 8529671 455.6
Vcells 15818616 120.7 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002987 | 0.0033400 | 0.0040824 | 0.003892 | 0.0042985 | 0.025761 |
2 | sum(x == value) | 0.035581 | 0.0374245 | 0.0387245 | 0.037691 | 0.0391610 | 0.052762 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum(x == value) | 11.91195 | 11.20494 | 9.485654 | 9.684224 | 9.110387 | 2.048135 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326636 284.5 8529671 455.6 8529671 455.6
Vcells 15818658 120.7 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002412 | 0.0027625 | 0.0037828 | 0.0033975 | 0.0043455 | 0.023250 |
2 | sum(x == value) | 0.276560 | 0.2957400 | 0.3162287 | 0.3059775 | 0.3342625 | 0.401091 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00 | 1.0000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 |
2 | sum(x == value) | 114.66 | 107.0552 | 83.59668 | 90.0596 | 76.92153 | 17.25123 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326699 284.5 8529671 455.6 8529671 455.6
Vcells 15819213 120.7 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001981 | 0.0025015 | 0.0102454 | 0.0063565 | 0.016595 | 0.030828 |
2 | sum(x == value) | 2.797049 | 3.5377980 | 3.6884905 | 3.5646060 | 3.593936 | 17.222212 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | sum(x == value) | 1411.938 | 1414.271 | 360.0129 | 560.7812 | 216.5674 | 558.6549 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326762 284.5 8529671 455.6 8529671 455.6
Vcells 15819255 120.7 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002007 | 0.002561 | 0.0131692 | 0.0036965 | 0.0241115 | 0.035557 |
2 | sum(x == value) | 35.804868 | 36.474240 | 39.2176533 | 36.9697970 | 37.4299840 | 55.510647 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00 | 1.00 | 1.000 | 1.0 | 1.000 | 1.000 |
2 | sum(x == value) | 17839.99 | 14242.19 | 2977.987 | 10001.3 | 1552.371 | 1561.174 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326825 284.5 8529671 455.6 8529671 455.6
Vcells 21375126 163.1 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.003170 | 0.0033640 | 0.0038077 | 0.0035055 | 0.003624 | 0.025294 |
2 | sum(x == value) | 0.003983 | 0.0040985 | 0.0042885 | 0.0041635 | 0.004260 | 0.014047 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
2 | sum(x == value) | 1.256467 | 1.218341 | 1.12628 | 1.187705 | 1.175497 | 0.5553491 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326888 284.5 8529671 455.6 8529671 455.6
Vcells 21375167 163.1 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.003084 | 0.0033045 | 0.0040723 | 0.0037945 | 0.0043805 | 0.025023 |
2 | sum(x == value) | 0.032108 | 0.0335125 | 0.0342588 | 0.0336250 | 0.0337760 | 0.052027 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 |
2 | sum(x == value) | 10.41115 | 10.14147 | 8.41259 | 8.86151 | 7.710535 | 2.079167 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5326951 284.5 8529671 455.6 8529671 455.6
Vcells 21375491 163.1 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002565 | 0.002884 | 0.0041810 | 0.0036640 | 0.004688 | 0.028827 |
2 | sum(x == value) | 0.261388 | 0.271350 | 0.2949966 | 0.2892505 | 0.313009 | 0.374071 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | sum(x == value) | 101.9057 | 94.08807 | 70.55698 | 78.94391 | 66.76813 | 12.97641 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5327014 284.5 8529671 455.6 8529671 455.6
Vcells 21375863 163.1 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001985 | 0.002481 | 0.0111833 | 0.009625 | 0.0183635 | 0.032442 |
2 | sum(x == value) | 3.321211 | 3.411456 | 3.6900379 | 3.441822 | 3.5675620 | 17.761495 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000 | 1.000 | 1.00 | 1.0000 | 1.0000 | 1.0000 |
2 | sum(x == value) | 1673.154 | 1375.032 | 329.96 | 357.5919 | 194.2746 | 547.4846 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5327077 284.5 8529671 455.6 8529671 455.6
Vcells 21375905 163.1 53223152 406.1 60562128 462.1
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001998 | 0.0025375 | 0.0141113 | 0.003532 | 0.0268855 | 0.030452 |
2 | sum(x == value) | 32.952294 | 33.4601140 | 40.3936593 | 34.074120 | 35.2056820 | 413.800210 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.00 |
2 | sum(x == value) | 16492.64 | 13186.25 | 2862.504 | 9647.259 | 1309.467 | 13588.61 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 21.96 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('count')
Copyright Henrik Bengtsson. Last updated on 2021-08-25 19:14:11 (+0200 UTC). Powered by RSP.