matrixStats.benchmarks


colWeightedMedians() and rowWeightedMedians() benchmarks on subsetted computation

This report benchmark the performance of colWeightedMedians() and rowWeightedMedians on subsetted computation.

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "double")

Results

10x10 matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5332124 284.8    8529671 455.6  8529671 455.6
Vcells 10812817  82.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322502 284.3    8529671 455.6  8529671 455.6
Vcells 10780820  82.3   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")

Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 0.052045 0.0536070 0.0575650 0.0569805 0.0602065 0.089569
3 colWeightedMedians(X[rows, cols], w[rows]) 0.053224 0.0560555 0.0594848 0.0583805 0.0623330 0.078030
2 colWeightedMedians(X, w, rows, cols) 0.053628 0.0553440 0.0642821 0.0584975 0.0625230 0.524478
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 colWeightedMedians(X[rows, cols], w[rows]) 1.022654 1.045675 1.033350 1.024570 1.035320 0.8711719
2 colWeightedMedians(X, w, rows, cols) 1.030416 1.032402 1.116686 1.026623 1.038476 5.8555750

Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 0.052127 0.0544615 0.0596529 0.0583315 0.063122 0.080281
3 rowWeightedMedians(X[cols, rows], w[rows]) 0.053777 0.0559745 0.0597013 0.0594850 0.061987 0.073712
2 rowWeightedMedians(X, w, cols, rows) 0.053930 0.0567925 0.0644175 0.0602810 0.064068 0.412862
  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000
3 rowWeightedMedians(X[cols, rows], w[rows]) 1.031654 1.027781 1.000812 1.019775 0.9820189 0.9181749
2 rowWeightedMedians(X, w, cols, rows) 1.034589 1.042801 1.079873 1.033421 1.0149869 5.1427112

Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x10 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 52.045 53.6070 57.56501 56.9805 60.2065 89.569
2 rowWeightedMedians_X_w_S 52.127 54.4615 59.65287 58.3315 63.1220 80.281
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.00000 1.00000 1.00000 1.000000 1.0000000
2 rowWeightedMedians_X_w_S 1.001576 1.01594 1.03627 1.02371 1.048425 0.8963034

Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5321501 284.2    8529671 455.6  8529671 455.6
Vcells 10452190  79.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5321477 284.2    8529671 455.6  8529671 455.6
Vcells 10462243  79.9   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")

Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 0.444418 0.4576690 0.5007292 0.4747745 0.4999890 0.755358
3 colWeightedMedians(X[rows, cols], w[rows]) 0.454004 0.4635380 0.5023220 0.4798105 0.5053505 0.800361
2 colWeightedMedians(X, w, rows, cols) 0.456333 0.4705215 0.5184292 0.4861820 0.5227245 0.913797
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
3 colWeightedMedians(X[rows, cols], w[rows]) 1.02157 1.012824 1.003181 1.010607 1.010723 1.059578
2 colWeightedMedians(X, w, rows, cols) 1.02681 1.028083 1.035348 1.024027 1.045472 1.209753

Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 0.441649 0.4660425 0.5114300 0.4851390 0.5296885 0.778382
3 rowWeightedMedians(X[cols, rows], w[rows]) 0.456554 0.4748245 0.5169599 0.4937935 0.5134185 0.872021
2 rowWeightedMedians(X, w, cols, rows) 0.457541 0.4791175 0.5078214 0.4954720 0.5111390 0.777244
  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 1.000000 1.000000 1.0000000 1.000000 1.0000000 1.000000
3 rowWeightedMedians(X[cols, rows], w[rows]) 1.033748 1.018844 1.0108127 1.017839 0.9692838 1.120300
2 rowWeightedMedians(X, w, cols, rows) 1.035983 1.028055 0.9929442 1.021299 0.9649804 0.998538

Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x100 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 444.418 457.6690 500.7292 474.7745 499.9890 755.358
2 rowWeightedMedians_X_w_S 441.649 466.0425 511.4300 485.1390 529.6885 778.382
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.0000000 1.000000 1.00000 1.00000 1.0000 1.000000
2 rowWeightedMedians_X_w_S 0.9937694 1.018296 1.02137 1.02183 1.0594 1.030481

Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322239 284.3    8529671 455.6  8529671 455.6
Vcells 10458130  79.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322227 284.3    8529671 455.6  8529671 455.6
Vcells 10468203  79.9   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")

Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 0.292534 0.2982060 0.3339655 0.3050530 0.3642510 0.505192
2 colWeightedMedians(X, w, rows, cols) 0.308501 0.3136840 0.3580004 0.3216080 0.3897435 0.628624
3 colWeightedMedians(X[rows, cols], w[rows]) 0.307387 0.3121495 0.3499378 0.3253825 0.3805265 0.560474
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colWeightedMedians(X, w, rows, cols) 1.054582 1.051904 1.071968 1.054269 1.069986 1.244327
3 colWeightedMedians(X[rows, cols], w[rows]) 1.050774 1.046758 1.047826 1.066642 1.044682 1.109428

Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 0.291770 0.2968595 0.3270638 0.3010230 0.350930 0.490349
2 rowWeightedMedians(X, w, cols, rows) 0.309691 0.3155940 0.3553845 0.3248840 0.379625 0.644361
3 rowWeightedMedians(X[cols, rows], w[rows]) 0.308279 0.3137730 0.3548879 0.3299175 0.385463 0.500003
  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowWeightedMedians(X, w, cols, rows) 1.061422 1.063109 1.086591 1.079266 1.081768 1.314086
3 rowWeightedMedians(X[cols, rows], w[rows]) 1.056582 1.056975 1.085072 1.095988 1.098404 1.019688

Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x10 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowWeightedMedians_X_w_S 291.770 296.8595 327.0638 301.023 350.930 490.349
1 colWeightedMedians_X_w_S 292.534 298.2060 333.9655 305.053 364.251 505.192
  expr min lq mean median uq max
2 rowWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000
1 colWeightedMedians_X_w_S 1.002619 1.004536 1.021102 1.013388 1.037959 1.03027

Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322463 284.3    8529671 455.6  8529671 455.6
Vcells 10457457  79.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322439 284.3    8529671 455.6  8529671 455.6
Vcells 10467510  79.9   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")

Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 2.255763 2.447366 2.622357 2.516212 2.587087 9.047498
2 colWeightedMedians(X, w, rows, cols) 2.265093 2.481343 2.602557 2.541040 2.600634 8.935241
3 colWeightedMedians(X[rows, cols], w[rows]) 2.252489 2.491293 2.612389 2.555455 2.616852 4.107836
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.0000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 colWeightedMedians(X, w, rows, cols) 1.0041361 1.013883 0.9924496 1.009867 1.005236 0.9875925
3 colWeightedMedians(X[rows, cols], w[rows]) 0.9985486 1.017949 0.9961989 1.015596 1.011505 0.4540301

Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 2.222791 2.423980 2.513887 2.510527 2.560751 3.277597
3 rowWeightedMedians(X[cols, rows], w[rows]) 2.264434 2.491439 2.604456 2.533383 2.576276 8.796850
2 rowWeightedMedians(X, w, cols, rows) 2.285834 2.500108 2.635925 2.545445 2.598762 8.930997
  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 rowWeightedMedians(X[cols, rows], w[rows]) 1.018735 1.027830 1.036028 1.009104 1.006063 2.683933
2 rowWeightedMedians(X, w, cols, rows) 1.028362 1.031406 1.048545 1.013908 1.014844 2.724861

Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x1000 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowWeightedMedians_X_w_S 2.222791 2.423980 2.513887 2.510527 2.560751 3.277597
1 colWeightedMedians_X_w_S 2.255763 2.447366 2.622357 2.516212 2.587087 9.047498
  expr min lq mean median uq max
2 rowWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colWeightedMedians_X_w_S 1.014834 1.009648 1.043148 1.002264 1.010285 2.760406

Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322665 284.3    8529671 455.6  8529671 455.6
Vcells 10502411  80.2   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322647 284.3    8529671 455.6  8529671 455.6
Vcells 10602474  80.9   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")

Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 4.311679 4.741583 4.956463 4.791073 4.830357 21.410768
3 colWeightedMedians(X[rows, cols], w[rows]) 4.393377 4.883563 5.138474 4.936115 5.002079 21.825685
2 colWeightedMedians(X, w, rows, cols) 4.404769 4.925762 5.076675 4.989513 5.077012 7.161016
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 colWeightedMedians(X[rows, cols], w[rows]) 1.018948 1.029944 1.036722 1.030274 1.035551 1.0193789
2 colWeightedMedians(X, w, rows, cols) 1.021590 1.038843 1.024254 1.041419 1.051063 0.3344586

Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 4.374137 4.838030 5.129654 4.905475 4.956457 21.734457
2 rowWeightedMedians(X, w, cols, rows) 4.486593 4.932139 4.989111 4.996608 5.054518 5.998196
3 rowWeightedMedians(X[cols, rows], w[rows]) 4.505412 4.920116 5.160906 5.007936 5.052717 21.755484
  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 rowWeightedMedians(X, w, cols, rows) 1.025709 1.019452 0.9726017 1.018578 1.019784 0.2759763
3 rowWeightedMedians(X[cols, rows], w[rows]) 1.030012 1.016967 1.0060923 1.020887 1.019421 1.0009674

Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x1000 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 4.311679 4.741583 4.956463 4.791073 4.830357 21.41077
2 rowWeightedMedians_X_w_S 4.374137 4.838030 5.129654 4.905475 4.956457 21.73446
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowWeightedMedians_X_w_S 1.014486 1.020341 1.034943 1.023878 1.026106 1.015118

Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322871 284.3    8529671 455.6  8529671 455.6
Vcells 10504742  80.2   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols, 
+         na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows, 
+         cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5322853 284.3    8529671 455.6  8529671 455.6
Vcells 10604805  81.0   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE), 
+     `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows, 
+         na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols, 
+         rows], w = w[rows], na.rm = FALSE), unit = "ms")

Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 2.730721 2.975335 3.051785 3.033352 3.054703 4.592462
3 colWeightedMedians(X[rows, cols], w[rows]) 2.876968 3.092077 3.269317 3.157447 3.183505 11.976339
2 colWeightedMedians(X, w, rows, cols) 2.819557 3.096354 3.269797 3.160439 3.191239 12.535302
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 colWeightedMedians(X[rows, cols], w[rows]) 1.053556 1.039236 1.071280 1.040910 1.042165 2.607825
2 colWeightedMedians(X, w, rows, cols) 1.032532 1.040674 1.071438 1.041896 1.044697 2.729538

Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 2.776292 3.010362 3.084377 3.043135 3.087946 4.491698
3 rowWeightedMedians(X[cols, rows], w[rows]) 2.857283 3.130842 3.216857 3.186015 3.230631 4.242627
2 rowWeightedMedians(X, w, cols, rows) 2.839546 3.110234 3.399287 3.186598 3.242221 12.830877
  expr min lq mean median uq max
1 rowWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 rowWeightedMedians(X[cols, rows], w[rows]) 1.029172 1.040022 1.042952 1.046951 1.046207 0.9445486
2 rowWeightedMedians(X, w, cols, rows) 1.022784 1.033176 1.102099 1.047143 1.049960 2.8565761

Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x100 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 2.730721 2.975335 3.051785 3.033352 3.054703 4.592462
2 rowWeightedMedians_X_w_S 2.776292 3.010362 3.084377 3.043135 3.087946 4.491698
  expr min lq mean median uq max
1 colWeightedMedians_X_w_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowWeightedMedians_X_w_S 1.016688 1.011772 1.010679 1.003225 1.010883 0.9780588

Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 18.68 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colRowWeightedMedians_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 19:11:59 (+0200 UTC). Powered by RSP.