matrixStats.benchmarks


colRanges() and rowRanges() benchmarks on subsetted computation

This report benchmark the performance of colRanges() and rowRanges() on subsetted computation.

Data type “integer”

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 integer matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5284711 282.3    8529671 455.6  8529671 455.6
Vcells 10380208  79.2   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275333 281.8    8529671 455.6  8529671 455.6
Vcells 10349535  79.0   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.001961 0.0020475 0.0030051 0.0020880 0.0021865 0.088867
2 colRanges(X, rows, cols) 0.002340 0.0024575 0.0025985 0.0025365 0.0026355 0.005529
3 colRanges(X[rows, cols]) 0.002814 0.0029880 0.0032172 0.0031035 0.0032710 0.007759
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 colRanges(X, rows, cols) 1.193269 1.200244 0.8646856 1.214799 1.205351 0.0622166
3 colRanges(X[rows, cols]) 1.434982 1.459341 1.0705655 1.486351 1.495998 0.0873103

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowRanges_X_S 0.002009 0.0021170 0.0022792 0.0021795 0.0023175 0.005540
2 rowRanges(X, cols, rows) 0.002383 0.0024685 0.0036978 0.0025320 0.0026815 0.112314
3 rowRanges(X[cols, rows]) 0.002881 0.0030920 0.0034571 0.0032020 0.0033840 0.015251
  expr min lq mean median uq max
1 rowRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges(X, cols, rows) 1.186162 1.166037 1.622394 1.161734 1.157066 20.273285
3 rowRanges(X[cols, rows]) 1.434047 1.460557 1.516809 1.469144 1.460194 2.752888

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 1.961 2.0475 3.00515 2.0880 2.1865 88.867
2 rowRanges_X_S 2.009 2.1170 2.27920 2.1795 2.3175 5.540
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 rowRanges_X_S 1.024477 1.033944 0.7584314 1.043822 1.059913 0.0623404

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 integer matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5273952 281.7    8529671 455.6  8529671 455.6
Vcells 10018404  76.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5273928 281.7    8529671 455.6  8529671 455.6
Vcells 10023457  76.5   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.019220 0.0202785 0.0209938 0.0209020 0.021548 0.028393
2 colRanges(X, rows, cols) 0.022091 0.0230705 0.0240528 0.0237480 0.024272 0.036341
3 colRanges(X[rows, cols]) 0.029285 0.0308255 0.0328113 0.0317855 0.033014 0.076312
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colRanges(X, rows, cols) 1.149376 1.137683 1.145712 1.136159 1.126415 1.279928
3 colRanges(X[rows, cols]) 1.523673 1.520107 1.562908 1.520692 1.532114 2.687705

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 0.019247 0.0199475 0.0212810 0.0208235 0.0217910 0.047923
1 rowRanges_X_S 0.019995 0.0208815 0.0218721 0.0219785 0.0226165 0.028548
3 rowRanges(X[cols, rows]) 0.030854 0.0314480 0.0333112 0.0327595 0.0342245 0.053218
  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowRanges_X_S 1.038863 1.046823 1.027775 1.055466 1.037883 0.5957056
3 rowRanges(X[cols, rows]) 1.603055 1.576538 1.565302 1.573198 1.570580 1.1104897

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 19.220 20.2785 20.99377 20.9020 21.5480 28.393
2 rowRanges_X_S 19.995 20.8815 21.87208 21.9785 22.6165 28.548
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges_X_S 1.040323 1.029736 1.041837 1.051502 1.049587 1.005459

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 integer matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5274695 281.7    8529671 455.6  8529671 455.6
Vcells 10022443  76.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5274671 281.7    8529671 455.6  8529671 455.6
Vcells 10027496  76.6   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.014498 0.0148325 0.0151943 0.0152545 0.0153600 0.017962
2 colRanges(X, rows, cols) 0.019393 0.0199415 0.0206006 0.0204100 0.0207565 0.034746
3 colRanges(X[rows, cols]) 0.025697 0.0261810 0.0272128 0.0268035 0.0273605 0.055022
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colRanges(X, rows, cols) 1.337633 1.344446 1.355816 1.337966 1.351335 1.934417
3 colRanges(X[rows, cols]) 1.772451 1.765110 1.790989 1.757088 1.781283 3.063245

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowRanges_X_S 0.019007 0.0198945 0.0206969 0.0206480 0.0209895 0.035138
2 rowRanges(X, cols, rows) 0.019214 0.0201775 0.0209782 0.0209150 0.0213425 0.026627
3 rowRanges(X[cols, rows]) 0.031743 0.0332035 0.0346958 0.0346355 0.0350590 0.069478
  expr min lq mean median uq max
1 rowRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowRanges(X, cols, rows) 1.010891 1.014225 1.013588 1.012931 1.016818 0.7577836
3 rowRanges(X[cols, rows]) 1.670069 1.668979 1.676372 1.677426 1.670311 1.9772895

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 14.498 14.8325 15.19428 15.2545 15.3600 17.962
2 rowRanges_X_S 19.007 19.8945 20.69693 20.6480 20.9895 35.138
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges_X_S 1.311008 1.341278 1.362153 1.353568 1.366504 1.956241

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 integer matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5274900 281.8    8529671 455.6  8529671 455.6
Vcells 10023320  76.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5274876 281.8    8529671 455.6  8529671 455.6
Vcells 10028373  76.6   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.036023 0.0397245 0.0420837 0.0417455 0.0434585 0.067160
2 colRanges(X, rows, cols) 0.042470 0.0468715 0.0502354 0.0495945 0.0531000 0.073264
3 colRanges(X[rows, cols]) 0.048893 0.0530160 0.0553122 0.0554755 0.0571870 0.070152
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colRanges(X, rows, cols) 1.178969 1.179914 1.193703 1.188020 1.221855 1.090887
3 colRanges(X[rows, cols]) 1.357272 1.334592 1.314339 1.328898 1.315899 1.044550

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowRanges_X_S 0.033585 0.0362560 0.0377057 0.0372760 0.0386595 0.053485
2 rowRanges(X, cols, rows) 0.032384 0.0378620 0.0401970 0.0399965 0.0419260 0.068506
3 rowRanges(X[cols, rows]) 0.044299 0.0469715 0.0491028 0.0489445 0.0509770 0.061887
  expr min lq mean median uq max
1 rowRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges(X, cols, rows) 0.964240 1.044296 1.066075 1.072983 1.084494 1.280845
3 rowRanges(X[cols, rows]) 1.319012 1.295551 1.302267 1.313030 1.318615 1.157091

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges_X_S 33.585 36.2560 37.70566 37.2760 38.6595 53.485
1 colRanges_X_S 36.023 39.7245 42.08370 41.7455 43.4585 67.160
  expr min lq mean median uq max
2 rowRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colRanges_X_S 1.072592 1.095667 1.116111 1.119903 1.124135 1.255679

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 integer matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275110 281.8    8529671 455.6  8529671 455.6
Vcells 10045996  76.7   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275086 281.8    8529671 455.6  8529671 455.6
Vcells 10096049  77.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.130499 0.1368120 0.1611784 0.1553205 0.1767130 0.252218
2 colRanges(X, rows, cols) 0.147868 0.1536695 0.1785957 0.1747015 0.1988680 0.299349
3 colRanges(X[rows, cols]) 0.201111 0.2122050 0.2486858 0.2401130 0.2693935 0.368923
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colRanges(X, rows, cols) 1.133097 1.123217 1.108062 1.124781 1.125373 1.186866
3 colRanges(X[rows, cols]) 1.541092 1.551070 1.542923 1.545920 1.524469 1.462715

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 0.121502 0.1296910 0.1472742 0.1401625 0.1594755 0.250781
1 rowRanges_X_S 0.126744 0.1407030 0.1592755 0.1589260 0.1697035 0.227490
3 rowRanges(X[cols, rows]) 0.189912 0.2061865 0.2352388 0.2257905 0.2542060 0.319791
  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 1.000000 1.000000 1.000000 1.00000 1.000000 1.0000000
1 rowRanges_X_S 1.043143 1.084909 1.081489 1.13387 1.064135 0.9071261
3 rowRanges(X[cols, rows]) 1.563036 1.589829 1.597284 1.61092 1.594013 1.2751803

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 130.499 136.812 161.1784 155.3205 176.7130 252.218
2 rowRanges_X_S 126.744 140.703 159.2755 158.9260 169.7035 227.490
  expr min lq mean median uq max
1 colRanges_X_S 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowRanges_X_S 0.9712258 1.028441 0.988194 1.023213 0.960334 0.9019578

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 integer matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275323 281.8    8529671 455.6  8529671 455.6
Vcells 10046784  76.7   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275299 281.8    8529671 455.6  8529671 455.6
Vcells 10096837  77.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.091087 0.105285 0.1180325 0.1127475 0.1205720 0.287098
2 colRanges(X, rows, cols) 0.105857 0.122238 0.1351061 0.1304855 0.1461225 0.209747
3 colRanges(X[rows, cols]) 0.160686 0.184816 0.2075819 0.2014940 0.2322715 0.322001
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colRanges(X, rows, cols) 1.162153 1.161020 1.144651 1.157325 1.211911 0.7305763
3 colRanges(X[rows, cols]) 1.764094 1.755388 1.758684 1.787126 1.926413 1.1215717

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 0.098893 0.111990 0.1254097 0.1228230 0.1313675 0.236047
1 rowRanges_X_S 0.105175 0.114969 0.1302448 0.1297190 0.1390275 0.175607
3 rowRanges(X[cols, rows]) 0.173518 0.189835 0.2160340 0.2137265 0.2341840 0.294645
  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowRanges_X_S 1.063523 1.026601 1.038555 1.056146 1.058310 0.7439493
3 rowRanges(X[cols, rows]) 1.754603 1.695107 1.722626 1.740118 1.782663 1.2482472

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 91.087 105.285 118.0325 112.7475 120.5720 287.098
2 rowRanges_X_S 105.175 114.969 130.2448 129.7190 139.0275 175.607
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowRanges_X_S 1.154665 1.091979 1.103465 1.150527 1.153066 0.6116622

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 double matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275540 281.8    8529671 455.6  8529671 455.6
Vcells 10137899  77.4   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275507 281.8    8529671 455.6  8529671 455.6
Vcells 10138037  77.4   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.001966 0.002051 0.0023074 0.0020970 0.0021895 0.018612
2 colRanges(X, rows, cols) 0.002367 0.002446 0.0025814 0.0025165 0.0026375 0.005537
3 colRanges(X[rows, cols]) 0.002874 0.003100 0.0033132 0.0031760 0.0032800 0.007898
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colRanges(X, rows, cols) 1.203967 1.192589 1.118785 1.200048 1.204613 0.2974962
3 colRanges(X[rows, cols]) 1.461852 1.511458 1.435938 1.514545 1.498059 0.4243499

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowRanges_X_S 0.002013 0.0021200 0.0022276 0.0021775 0.0022460 0.004895
2 rowRanges(X, cols, rows) 0.002385 0.0024675 0.0027750 0.0025410 0.0026565 0.020980
3 rowRanges(X[cols, rows]) 0.002935 0.0031355 0.0033161 0.0032275 0.0033730 0.006645
  expr min lq mean median uq max
1 rowRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges(X, cols, rows) 1.184799 1.163915 1.245741 1.166935 1.182769 4.286006
3 rowRanges(X[cols, rows]) 1.458023 1.479009 1.488622 1.482204 1.501781 1.357508

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 1.966 2.051 2.30737 2.0970 2.1895 18.612
2 rowRanges_X_S 2.013 2.120 2.22763 2.1775 2.2460 4.895
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 rowRanges_X_S 1.023906 1.033642 0.9654412 1.038388 1.025805 0.2630024

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 double matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275737 281.8    8529671 455.6  8529671 455.6
Vcells 10143856  77.4   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275713 281.8    8529671 455.6  8529671 455.6
Vcells 10153909  77.5   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colRanges(X, rows, cols) 0.020479 0.022388 0.0236069 0.0230210 0.023640 0.038637
1 colRanges_X_S 0.021569 0.022727 0.0235964 0.0235820 0.024032 0.030008
3 colRanges(X[rows, cols]) 0.036079 0.038117 0.0397602 0.0393795 0.039892 0.073133
  expr min lq mean median uq max
2 colRanges(X, rows, cols) 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
1 colRanges_X_S 1.053225 1.015142 0.9995556 1.024369 1.016582 0.7766649
3 colRanges(X[rows, cols]) 1.761756 1.702564 1.6842642 1.710590 1.687479 1.8928229

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 0.024003 0.0256810 0.0274516 0.0265875 0.0274190 0.064424
1 rowRanges_X_S 0.025524 0.0270575 0.0284155 0.0283500 0.0292785 0.043727
3 rowRanges(X[cols, rows]) 0.040490 0.0423565 0.0438055 0.0437525 0.0450170 0.051882
  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowRanges_X_S 1.063367 1.053600 1.035112 1.066291 1.067818 0.6787377
3 rowRanges(X[cols, rows]) 1.686872 1.649332 1.595735 1.645604 1.641818 0.8053210

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 21.569 22.7270 23.59637 23.582 24.0320 30.008
2 rowRanges_X_S 25.524 27.0575 28.41547 28.350 29.2785 43.727
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges_X_S 1.183365 1.190544 1.204231 1.202188 1.218313 1.457178

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 double matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275937 281.8    8529671 455.6  8529671 455.6
Vcells 10145279  77.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5275913 281.8    8529671 455.6  8529671 455.6
Vcells 10155332  77.5   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.017208 0.0180405 0.0186029 0.0185750 0.018823 0.032158
2 colRanges(X, rows, cols) 0.018402 0.0192105 0.0197464 0.0196890 0.020151 0.026949
3 colRanges(X[rows, cols]) 0.032242 0.0335585 0.0348291 0.0340055 0.035160 0.069628
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colRanges(X, rows, cols) 1.069386 1.064854 1.061468 1.059973 1.070552 0.8380185
3 colRanges(X[rows, cols]) 1.873663 1.860176 1.872238 1.830713 1.867927 2.1651844

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowRanges_X_S 0.023957 0.025030 0.0260793 0.0253655 0.026453 0.038574
2 rowRanges(X, cols, rows) 0.024391 0.025670 0.0267179 0.0267205 0.027449 0.042101
3 rowRanges(X[cols, rows]) 0.041732 0.043514 0.0453701 0.0451915 0.045685 0.081784
  expr min lq mean median uq max
1 rowRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges(X, cols, rows) 1.018116 1.025569 1.024488 1.053419 1.037652 1.091435
3 rowRanges(X[cols, rows]) 1.741954 1.738474 1.739697 1.781613 1.727025 2.120185

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 17.208 18.0405 18.60291 18.5750 18.823 32.158
2 rowRanges_X_S 23.957 25.0300 26.07930 25.3655 26.453 38.574
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges_X_S 1.392201 1.387434 1.401894 1.365572 1.405355 1.199515

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 double matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5276142 281.8    8529671 455.6  8529671 455.6
Vcells 10145415  77.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5276118 281.8    8529671 455.6  8529671 455.6
Vcells 10155468  77.5   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.036116 0.0401485 0.0430188 0.0421410 0.0448010 0.074487
2 colRanges(X, rows, cols) 0.035282 0.0444070 0.0493891 0.0478195 0.0527630 0.087755
3 colRanges(X[rows, cols]) 0.052511 0.0589570 0.0622248 0.0616820 0.0645095 0.087244
  expr min lq mean median uq max
1 colRanges_X_S 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colRanges(X, rows, cols) 0.9769077 1.106069 1.148082 1.134750 1.177719 1.178125
3 colRanges(X[rows, cols]) 1.4539539 1.468473 1.446457 1.463705 1.439912 1.171265

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowRanges_X_S 0.036295 0.0401505 0.0422042 0.0416980 0.0440115 0.057381
2 rowRanges(X, cols, rows) 0.030486 0.0412595 0.0453842 0.0447375 0.0485925 0.088057
3 rowRanges(X[cols, rows]) 0.049509 0.0561305 0.0585581 0.0581410 0.0612455 0.072385
  expr min lq mean median uq max
1 rowRanges_X_S 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges(X, cols, rows) 0.8399504 1.027621 1.075348 1.072893 1.104086 1.534602
3 rowRanges(X[cols, rows]) 1.3640722 1.398003 1.387495 1.394335 1.391579 1.261480

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges_X_S 36.295 40.1505 42.20418 41.698 44.0115 57.381
1 colRanges_X_S 36.116 40.1485 43.01877 42.141 44.8010 74.487
  expr min lq mean median uq max
2 rowRanges_X_S 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.000000
1 colRanges_X_S 0.9950682 0.9999502 1.019301 1.010624 1.017939 1.298113

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 double matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5276352 281.8    8529671 455.6  8529671 455.6
Vcells 10190887  77.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5276328 281.8    8529671 455.6  8529671 455.6
Vcells 10290940  78.6   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.148704 0.1520220 0.1773611 0.168714 0.1937670 0.268810
2 colRanges(X, rows, cols) 0.157781 0.1618165 0.1887665 0.178095 0.2070165 0.350054
3 colRanges(X[rows, cols]) 0.243819 0.2551330 0.2953810 0.291198 0.3187445 0.410486
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colRanges(X, rows, cols) 1.061041 1.064428 1.064306 1.055603 1.068378 1.302236
3 colRanges(X[rows, cols]) 1.639626 1.678264 1.665422 1.725986 1.644989 1.527049

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 0.177058 0.1798430 0.2033431 0.1887905 0.2189920 0.383434
1 rowRanges_X_S 0.180120 0.1882065 0.2183224 0.2100115 0.2364915 0.327934
3 rowRanges(X[cols, rows]) 0.273754 0.2862750 0.3264317 0.3092660 0.3556315 0.469742
  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowRanges_X_S 1.017294 1.046504 1.073665 1.112405 1.079909 0.8552554
3 rowRanges(X[cols, rows]) 1.546126 1.591805 1.605324 1.638144 1.623948 1.2250922

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 148.704 152.0220 177.3611 168.7140 193.7670 268.810
2 rowRanges_X_S 180.120 188.2065 218.3224 210.0115 236.4915 327.934
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges_X_S 1.211265 1.238022 1.230949 1.244778 1.220494 1.219947

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 double matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5276565 281.8    8529671 455.6  8529671 455.6
Vcells 10191031  77.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5276541 281.8    8529671 455.6  8529671 455.6
Vcells 10291084  78.6   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 0.111994 0.1185700 0.1348464 0.1296555 0.1422635 0.212458
2 colRanges(X, rows, cols) 0.106181 0.1143010 0.1302994 0.1299525 0.1363570 0.202443
3 colRanges(X[rows, cols]) 0.207885 0.2264065 0.2566025 0.2520265 0.2767080 0.425901
  expr min lq mean median uq max
1 colRanges_X_S 1.0000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 colRanges(X, rows, cols) 0.9480954 0.963996 0.9662801 1.002291 0.958482 0.9528613
3 colRanges(X[rows, cols]) 1.8562155 1.909475 1.9029248 1.943817 1.945039 2.0046362

Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 0.140555 0.1476530 0.1711768 0.1670870 0.1838090 0.351313
1 rowRanges_X_S 0.151332 0.1561730 0.1810896 0.1710405 0.1980135 0.267442
3 rowRanges(X[cols, rows]) 0.245382 0.2556045 0.2956437 0.2792345 0.3227230 0.421361
  expr min lq mean median uq max
2 rowRanges(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowRanges_X_S 1.076675 1.057703 1.057910 1.023661 1.077279 0.7612642
3 rowRanges(X[cols, rows]) 1.745808 1.731116 1.727125 1.671192 1.755752 1.1993891

Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colRanges_X_S 111.994 118.570 134.8464 129.6555 142.2635 212.458
2 rowRanges_X_S 151.332 156.173 181.0897 171.0405 198.0135 267.442
  expr min lq mean median uq max
1 colRanges_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowRanges_X_S 1.351251 1.317138 1.342933 1.319192 1.391879 1.258799

Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 23.36 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colRowRanges_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 19:06:56 (+0200 UTC). Powered by RSP.