matrixStats.benchmarks


colQuantiles() and rowQuantiles() benchmarks on subsetted computation

This report benchmark the performance of colQuantiles() and rowQuantiles() on subsetted computation.

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "double")

Results

10x10 matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5277191 281.9    8529671 455.6  8529671 455.6
Vcells 10438339  79.7   31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X, 
+     rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows, 
+     cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269002 281.4    8529671 455.6  8529671 455.6
Vcells 10410708  79.5   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X, 
+     rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols, 
+     rows], probs = probs, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 colQuantiles(X[rows, cols]) 0.189556 0.2023435 0.2312232 0.2225175 0.2461560 0.325888
2 colQuantiles(X, rows, cols) 0.190022 0.2017890 0.2369091 0.2291760 0.2614565 0.320707
1 colQuantiles_X_S 0.188130 0.2022575 0.2423824 0.2351850 0.2569375 0.975538
  expr min lq mean median uq max
3 colQuantiles(X[rows, cols]) 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.0000000
2 colQuantiles(X, rows, cols) 1.0024584 0.9972596 1.024590 1.029923 1.062158 0.9841019
1 colQuantiles_X_S 0.9924772 0.9995750 1.048261 1.056928 1.043799 2.9934763

Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 rowQuantiles(X[cols, rows]) 0.190946 0.2031980 0.2336701 0.2281225 0.2493630 0.332234
1 rowQuantiles_X_S 0.187947 0.2053835 0.2429414 0.2378675 0.2673165 0.334525
2 rowQuantiles(X, cols, rows) 0.190509 0.2066295 0.2489178 0.2407855 0.2598540 1.031073
  expr min lq mean median uq max
3 rowQuantiles(X[cols, rows]) 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 rowQuantiles_X_S 0.9842940 1.010755 1.039677 1.042718 1.071997 1.006896
2 rowQuantiles(X, cols, rows) 0.9977114 1.016887 1.065253 1.055510 1.042071 3.103454

Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x10 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 188.130 202.2575 242.3824 235.1850 256.9375 975.538
2 rowQuantiles_X_S 187.947 205.3835 242.9414 237.8675 267.3165 334.525
  expr min lq mean median uq max
1 colQuantiles_X_S 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowQuantiles_X_S 0.9990273 1.015456 1.002306 1.011406 1.040395 0.3429133

Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5268597 281.4    8529671 455.6  8529671 455.6
Vcells 10083645  77.0   31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X, 
+     rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows, 
+     cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5268591 281.4    8529671 455.6  8529671 455.6
Vcells 10093728  77.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X, 
+     rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols, 
+     rows], probs = probs, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 1.259280 1.393225 1.472565 1.441515 1.513841 2.013098
3 colQuantiles(X[rows, cols]) 1.263399 1.407822 1.587726 1.452552 1.540334 11.213533
2 colQuantiles(X, rows, cols) 1.267753 1.408001 1.493309 1.462292 1.524339 2.465260
  expr min lq mean median uq max
1 colQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 colQuantiles(X[rows, cols]) 1.003271 1.010478 1.078204 1.007656 1.017501 5.570287
2 colQuantiles(X, rows, cols) 1.006728 1.010606 1.014087 1.014413 1.006935 1.224610

Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowQuantiles_X_S 1.270278 1.413137 1.492121 1.464138 1.540313 2.143832
3 rowQuantiles(X[cols, rows]) 1.282105 1.426494 1.484845 1.484630 1.549282 1.837942
2 rowQuantiles(X, cols, rows) 1.296294 1.440462 1.619187 1.485569 1.549843 12.371649
  expr min lq mean median uq max
1 rowQuantiles_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
3 rowQuantiles(X[cols, rows]) 1.009311 1.009452 0.9951238 1.013997 1.005823 0.8573162
2 rowQuantiles(X, cols, rows) 1.020481 1.019336 1.0851580 1.014638 1.006187 5.7708109

Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x100 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 1.259280 1.393225 1.472565 1.441515 1.513841 2.013098
2 rowQuantiles_X_S 1.270278 1.413137 1.492121 1.464138 1.540313 2.143832
  expr min lq mean median uq max
1 colQuantiles_X_S 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000
2 rowQuantiles_X_S 1.008734 1.014292 1.01328 1.015693 1.017487 1.064942

Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269340 281.5    8529671 455.6  8529671 455.6
Vcells 10087697  77.0   31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X, 
+     rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows, 
+     cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269334 281.5    8529671 455.6  8529671 455.6
Vcells 10097780  77.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X, 
+     rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols, 
+     rows], probs = probs, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 0.376902 0.3857895 0.4334700 0.4091225 0.4526740 0.657567
2 colQuantiles(X, rows, cols) 0.391405 0.4113425 0.4483459 0.4247020 0.4662810 0.671658
3 colQuantiles(X[rows, cols]) 0.389880 0.4108325 0.4526213 0.4281940 0.4662545 0.831225
  expr min lq mean median uq max
1 colQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colQuantiles(X, rows, cols) 1.038479 1.066236 1.034318 1.038080 1.030059 1.021429
3 colQuantiles(X[rows, cols]) 1.034433 1.064914 1.044181 1.046616 1.030001 1.264092

Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowQuantiles_X_S 0.396712 0.4071405 0.4485341 0.425961 0.4533000 0.675619
3 rowQuantiles(X[cols, rows]) 0.412020 0.4235275 0.4663508 0.447727 0.4664785 0.871216
2 rowQuantiles(X, cols, rows) 0.412651 0.4342215 0.4690103 0.449217 0.4880695 0.659716
  expr min lq mean median uq max
1 rowQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 rowQuantiles(X[cols, rows]) 1.038587 1.040249 1.039722 1.051099 1.029072 1.2895078
2 rowQuantiles(X, cols, rows) 1.040178 1.066515 1.045651 1.054596 1.076703 0.9764616

Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x10 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 376.902 385.7895 433.4700 409.1225 452.674 657.567
2 rowQuantiles_X_S 396.712 407.1405 448.5341 425.9610 453.300 675.619
  expr min lq mean median uq max
1 colQuantiles_X_S 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowQuantiles_X_S 1.05256 1.055344 1.034752 1.041158 1.001383 1.027453

Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269545 281.5    8529671 455.6  8529671 455.6
Vcells 10088684  77.0   31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X, 
+     rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows, 
+     cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269539 281.5    8529671 455.6  8529671 455.6
Vcells 10098767  77.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X, 
+     rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols, 
+     rows], probs = probs, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
3 colQuantiles(X[rows, cols]) 9.442057 10.70863 11.20262 10.88031 11.17366 17.73532
1 colQuantiles_X_S 9.827438 10.67614 10.99559 10.90096 11.14681 17.44323
2 colQuantiles(X, rows, cols) 9.605101 10.75428 11.30458 10.94825 11.16329 22.75870
  expr min lq mean median uq max
3 colQuantiles(X[rows, cols]) 1.000000 1.0000000 1.0000000 1.000000 1.0000000 1.0000000
1 colQuantiles_X_S 1.040815 0.9969656 0.9815187 1.001898 0.9975973 0.9835305
2 colQuantiles(X, rows, cols) 1.017268 1.0042629 1.0091012 1.006244 0.9990723 1.2832416

Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowQuantiles(X, cols, rows) 9.386004 10.76202 11.16303 10.92739 11.19759 18.26512
1 rowQuantiles_X_S 9.806843 10.77164 11.23187 10.96238 11.18627 17.59954
3 rowQuantiles(X[cols, rows]) 9.317670 10.81869 11.21185 10.99886 11.19615 17.79435
  expr min lq mean median uq max
2 rowQuantiles(X, cols, rows) 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.0000000
1 rowQuantiles_X_S 1.0448369 1.000894 1.006166 1.003203 0.9989891 0.9635605
3 rowQuantiles(X[cols, rows]) 0.9927196 1.005266 1.004373 1.006541 0.9998717 0.9742262

Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x1000 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 9.827438 10.67614 10.99559 10.90096 11.14681 17.44323
2 rowQuantiles_X_S 9.806843 10.77164 11.23187 10.96238 11.18627 17.59954
  expr min lq mean median uq max
1 colQuantiles_X_S 1.0000000 1.000000 1.000000 1.000000 1.00000 1.000000
2 rowQuantiles_X_S 0.9979043 1.008945 1.021489 1.005635 1.00354 1.008961

Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269767 281.5    8529671 455.6  8529671 455.6
Vcells 10133447  77.4   31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X, 
+     rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows, 
+     cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269749 281.5    8529671 455.6  8529671 455.6
Vcells 10233510  78.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X, 
+     rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols, 
+     rows], probs = probs, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 12.22300 13.36760 14.12116 13.52681 13.79721 25.01684
2 colQuantiles(X, rows, cols) 12.28700 13.54403 14.38803 13.70976 13.98496 25.88454
3 colQuantiles(X[rows, cols]) 11.75371 13.51295 13.68049 13.73721 13.94468 14.99997
  expr min lq mean median uq max
1 colQuantiles_X_S 1.0000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 colQuantiles(X, rows, cols) 1.0052363 1.013198 1.0188987 1.013524 1.013608 1.0346847
3 colQuantiles(X[rows, cols]) 0.9616057 1.010873 0.9687936 1.015554 1.010689 0.5995949

Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowQuantiles_X_S 12.49744 13.70006 14.27917 13.92902 14.22438 25.77719
3 rowQuantiles(X[cols, rows]) 12.27313 13.94419 14.79305 14.13867 14.32470 37.72975
2 rowQuantiles(X, cols, rows) 12.80339 13.95292 14.49924 14.15657 14.35943 25.69399
  expr min lq mean median uq max
1 rowQuantiles_X_S 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 rowQuantiles(X[cols, rows]) 0.9820518 1.017820 1.035988 1.015051 1.007052 1.463687
2 rowQuantiles(X, cols, rows) 1.0244810 1.018457 1.015412 1.016337 1.009494 0.996772

Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x1000 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 12.22300 13.36760 14.12116 13.52681 13.79721 25.01684
2 rowQuantiles_X_S 12.49744 13.70006 14.27917 13.92902 14.22438 25.77719
  expr min lq mean median uq max
1 colQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowQuantiles_X_S 1.022453 1.024871 1.011189 1.029734 1.030961 1.030394

Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269980 281.5    8529671 455.6  8529671 455.6
Vcells 10134275  77.4   31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X, 
+     rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows, 
+     cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5269962 281.5    8529671 455.6  8529671 455.6
Vcells 10234338  78.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X, 
+     rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols, 
+     rows], probs = probs, na.rm = FALSE), unit = "ms")

Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 2.929666 3.283390 3.354438 3.318930 3.384416 4.841613
3 colQuantiles(X[rows, cols]) 3.115852 3.411503 3.492563 3.454354 3.537214 4.350086
2 colQuantiles(X, rows, cols) 2.992192 3.412097 3.678507 3.462241 3.532310 13.599391
  expr min lq mean median uq max
1 colQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 colQuantiles(X[rows, cols]) 1.063552 1.039019 1.041177 1.040803 1.045147 0.8984787
2 colQuantiles(X, rows, cols) 1.021342 1.039199 1.096609 1.043180 1.043699 2.8088554

Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowQuantiles_X_S 3.194023 3.519172 3.576079 3.554039 3.629571 4.048947
2 rowQuantiles(X, cols, rows) 3.286063 3.665307 3.776926 3.728198 3.805614 5.454258
3 rowQuantiles(X[cols, rows]) 3.289315 3.676176 3.952174 3.743796 3.841694 13.341035
  expr min lq mean median uq max
1 rowQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowQuantiles(X, cols, rows) 1.028816 1.041525 1.056164 1.049003 1.048502 1.347081
3 rowQuantiles(X[cols, rows]) 1.029834 1.044614 1.105169 1.053392 1.058443 3.294939

Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x100 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colQuantiles_X_S 2.929666 3.283390 3.354438 3.318930 3.384416 4.841613
2 rowQuantiles_X_S 3.194023 3.519172 3.576079 3.554039 3.629571 4.048947
  expr min lq mean median uq max
1 colQuantiles_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowQuantiles_X_S 1.090234 1.071811 1.066074 1.070839 1.072436 0.8362806

Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 30.55 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colRowQuantiles_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 19:05:11 (+0200 UTC). Powered by RSP.