This report benchmark the performance of colQuantiles() and rowQuantiles() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "double")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5277191 281.9 8529671 455.6 8529671 455.6
Vcells 10438339 79.7 31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269002 281.4 8529671 455.6 8529671 455.6
Vcells 10410708 79.5 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | colQuantiles(X[rows, cols]) | 0.189556 | 0.2023435 | 0.2312232 | 0.2225175 | 0.2461560 | 0.325888 |
| 2 | colQuantiles(X, rows, cols) | 0.190022 | 0.2017890 | 0.2369091 | 0.2291760 | 0.2614565 | 0.320707 |
| 1 | colQuantiles_X_S | 0.188130 | 0.2022575 | 0.2423824 | 0.2351850 | 0.2569375 | 0.975538 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | colQuantiles(X[rows, cols]) | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colQuantiles(X, rows, cols) | 1.0024584 | 0.9972596 | 1.024590 | 1.029923 | 1.062158 | 0.9841019 |
| 1 | colQuantiles_X_S | 0.9924772 | 0.9995750 | 1.048261 | 1.056928 | 1.043799 | 2.9934763 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | rowQuantiles(X[cols, rows]) | 0.190946 | 0.2031980 | 0.2336701 | 0.2281225 | 0.2493630 | 0.332234 |
| 1 | rowQuantiles_X_S | 0.187947 | 0.2053835 | 0.2429414 | 0.2378675 | 0.2673165 | 0.334525 |
| 2 | rowQuantiles(X, cols, rows) | 0.190509 | 0.2066295 | 0.2489178 | 0.2407855 | 0.2598540 | 1.031073 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | rowQuantiles(X[cols, rows]) | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | rowQuantiles_X_S | 0.9842940 | 1.010755 | 1.039677 | 1.042718 | 1.071997 | 1.006896 |
| 2 | rowQuantiles(X, cols, rows) | 0.9977114 | 1.016887 | 1.065253 | 1.055510 | 1.042071 | 3.103454 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x10 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 188.130 | 202.2575 | 242.3824 | 235.1850 | 256.9375 | 975.538 |
| 2 | rowQuantiles_X_S | 187.947 | 205.3835 | 242.9414 | 237.8675 | 267.3165 | 334.525 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowQuantiles_X_S | 0.9990273 | 1.015456 | 1.002306 | 1.011406 | 1.040395 | 0.3429133 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5268597 281.4 8529671 455.6 8529671 455.6
Vcells 10083645 77.0 31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5268591 281.4 8529671 455.6 8529671 455.6
Vcells 10093728 77.1 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.259280 | 1.393225 | 1.472565 | 1.441515 | 1.513841 | 2.013098 |
| 3 | colQuantiles(X[rows, cols]) | 1.263399 | 1.407822 | 1.587726 | 1.452552 | 1.540334 | 11.213533 |
| 2 | colQuantiles(X, rows, cols) | 1.267753 | 1.408001 | 1.493309 | 1.462292 | 1.524339 | 2.465260 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 3 | colQuantiles(X[rows, cols]) | 1.003271 | 1.010478 | 1.078204 | 1.007656 | 1.017501 | 5.570287 |
| 2 | colQuantiles(X, rows, cols) | 1.006728 | 1.010606 | 1.014087 | 1.014413 | 1.006935 | 1.224610 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.270278 | 1.413137 | 1.492121 | 1.464138 | 1.540313 | 2.143832 |
| 3 | rowQuantiles(X[cols, rows]) | 1.282105 | 1.426494 | 1.484845 | 1.484630 | 1.549282 | 1.837942 |
| 2 | rowQuantiles(X, cols, rows) | 1.296294 | 1.440462 | 1.619187 | 1.485569 | 1.549843 | 12.371649 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 3 | rowQuantiles(X[cols, rows]) | 1.009311 | 1.009452 | 0.9951238 | 1.013997 | 1.005823 | 0.8573162 |
| 2 | rowQuantiles(X, cols, rows) | 1.020481 | 1.019336 | 1.0851580 | 1.014638 | 1.006187 | 5.7708109 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x100 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.259280 | 1.393225 | 1.472565 | 1.441515 | 1.513841 | 2.013098 |
| 2 | rowQuantiles_X_S | 1.270278 | 1.413137 | 1.492121 | 1.464138 | 1.540313 | 2.143832 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowQuantiles_X_S | 1.008734 | 1.014292 | 1.01328 | 1.015693 | 1.017487 | 1.064942 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269340 281.5 8529671 455.6 8529671 455.6
Vcells 10087697 77.0 31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269334 281.5 8529671 455.6 8529671 455.6
Vcells 10097780 77.1 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 0.376902 | 0.3857895 | 0.4334700 | 0.4091225 | 0.4526740 | 0.657567 |
| 2 | colQuantiles(X, rows, cols) | 0.391405 | 0.4113425 | 0.4483459 | 0.4247020 | 0.4662810 | 0.671658 |
| 3 | colQuantiles(X[rows, cols]) | 0.389880 | 0.4108325 | 0.4526213 | 0.4281940 | 0.4662545 | 0.831225 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colQuantiles(X, rows, cols) | 1.038479 | 1.066236 | 1.034318 | 1.038080 | 1.030059 | 1.021429 |
| 3 | colQuantiles(X[rows, cols]) | 1.034433 | 1.064914 | 1.044181 | 1.046616 | 1.030001 | 1.264092 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 0.396712 | 0.4071405 | 0.4485341 | 0.425961 | 0.4533000 | 0.675619 |
| 3 | rowQuantiles(X[cols, rows]) | 0.412020 | 0.4235275 | 0.4663508 | 0.447727 | 0.4664785 | 0.871216 |
| 2 | rowQuantiles(X, cols, rows) | 0.412651 | 0.4342215 | 0.4690103 | 0.449217 | 0.4880695 | 0.659716 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 3 | rowQuantiles(X[cols, rows]) | 1.038587 | 1.040249 | 1.039722 | 1.051099 | 1.029072 | 1.2895078 |
| 2 | rowQuantiles(X, cols, rows) | 1.040178 | 1.066515 | 1.045651 | 1.054596 | 1.076703 | 0.9764616 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x10 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 376.902 | 385.7895 | 433.4700 | 409.1225 | 452.674 | 657.567 |
| 2 | rowQuantiles_X_S | 396.712 | 407.1405 | 448.5341 | 425.9610 | 453.300 | 675.619 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowQuantiles_X_S | 1.05256 | 1.055344 | 1.034752 | 1.041158 | 1.001383 | 1.027453 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269545 281.5 8529671 455.6 8529671 455.6
Vcells 10088684 77.0 31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269539 281.5 8529671 455.6 8529671 455.6
Vcells 10098767 77.1 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | colQuantiles(X[rows, cols]) | 9.442057 | 10.70863 | 11.20262 | 10.88031 | 11.17366 | 17.73532 |
| 1 | colQuantiles_X_S | 9.827438 | 10.67614 | 10.99559 | 10.90096 | 11.14681 | 17.44323 |
| 2 | colQuantiles(X, rows, cols) | 9.605101 | 10.75428 | 11.30458 | 10.94825 | 11.16329 | 22.75870 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | colQuantiles(X[rows, cols]) | 1.000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 1 | colQuantiles_X_S | 1.040815 | 0.9969656 | 0.9815187 | 1.001898 | 0.9975973 | 0.9835305 |
| 2 | colQuantiles(X, rows, cols) | 1.017268 | 1.0042629 | 1.0091012 | 1.006244 | 0.9990723 | 1.2832416 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles(X, cols, rows) | 9.386004 | 10.76202 | 11.16303 | 10.92739 | 11.19759 | 18.26512 |
| 1 | rowQuantiles_X_S | 9.806843 | 10.77164 | 11.23187 | 10.96238 | 11.18627 | 17.59954 |
| 3 | rowQuantiles(X[cols, rows]) | 9.317670 | 10.81869 | 11.21185 | 10.99886 | 11.19615 | 17.79435 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles(X, cols, rows) | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 1 | rowQuantiles_X_S | 1.0448369 | 1.000894 | 1.006166 | 1.003203 | 0.9989891 | 0.9635605 |
| 3 | rowQuantiles(X[cols, rows]) | 0.9927196 | 1.005266 | 1.004373 | 1.006541 | 0.9998717 | 0.9742262 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x1000 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 9.827438 | 10.67614 | 10.99559 | 10.90096 | 11.14681 | 17.44323 |
| 2 | rowQuantiles_X_S | 9.806843 | 10.77164 | 11.23187 | 10.96238 | 11.18627 | 17.59954 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
| 2 | rowQuantiles_X_S | 0.9979043 | 1.008945 | 1.021489 | 1.005635 | 1.00354 | 1.008961 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269767 281.5 8529671 455.6 8529671 455.6
Vcells 10133447 77.4 31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269749 281.5 8529671 455.6 8529671 455.6
Vcells 10233510 78.1 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 12.22300 | 13.36760 | 14.12116 | 13.52681 | 13.79721 | 25.01684 |
| 2 | colQuantiles(X, rows, cols) | 12.28700 | 13.54403 | 14.38803 | 13.70976 | 13.98496 | 25.88454 |
| 3 | colQuantiles(X[rows, cols]) | 11.75371 | 13.51295 | 13.68049 | 13.73721 | 13.94468 | 14.99997 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colQuantiles(X, rows, cols) | 1.0052363 | 1.013198 | 1.0188987 | 1.013524 | 1.013608 | 1.0346847 |
| 3 | colQuantiles(X[rows, cols]) | 0.9616057 | 1.010873 | 0.9687936 | 1.015554 | 1.010689 | 0.5995949 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 12.49744 | 13.70006 | 14.27917 | 13.92902 | 14.22438 | 25.77719 |
| 3 | rowQuantiles(X[cols, rows]) | 12.27313 | 13.94419 | 14.79305 | 14.13867 | 14.32470 | 37.72975 |
| 2 | rowQuantiles(X, cols, rows) | 12.80339 | 13.95292 | 14.49924 | 14.15657 | 14.35943 | 25.69399 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 3 | rowQuantiles(X[cols, rows]) | 0.9820518 | 1.017820 | 1.035988 | 1.015051 | 1.007052 | 1.463687 |
| 2 | rowQuantiles(X, cols, rows) | 1.0244810 | 1.018457 | 1.015412 | 1.016337 | 1.009494 | 0.996772 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x1000 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 12.22300 | 13.36760 | 14.12116 | 13.52681 | 13.79721 | 25.01684 |
| 2 | rowQuantiles_X_S | 12.49744 | 13.70006 | 14.27917 | 13.92902 | 14.22438 | 25.77719 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowQuantiles_X_S | 1.022453 | 1.024871 | 1.011189 | 1.029734 | 1.030961 | 1.030394 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269980 281.5 8529671 455.6 8529671 455.6
Vcells 10134275 77.4 31876688 243.2 60562128 462.1
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5269962 281.5 8529671 455.6 8529671 455.6
Vcells 10234338 78.1 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 2.929666 | 3.283390 | 3.354438 | 3.318930 | 3.384416 | 4.841613 |
| 3 | colQuantiles(X[rows, cols]) | 3.115852 | 3.411503 | 3.492563 | 3.454354 | 3.537214 | 4.350086 |
| 2 | colQuantiles(X, rows, cols) | 2.992192 | 3.412097 | 3.678507 | 3.462241 | 3.532310 | 13.599391 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 3 | colQuantiles(X[rows, cols]) | 1.063552 | 1.039019 | 1.041177 | 1.040803 | 1.045147 | 0.8984787 |
| 2 | colQuantiles(X, rows, cols) | 1.021342 | 1.039199 | 1.096609 | 1.043180 | 1.043699 | 2.8088554 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 3.194023 | 3.519172 | 3.576079 | 3.554039 | 3.629571 | 4.048947 |
| 2 | rowQuantiles(X, cols, rows) | 3.286063 | 3.665307 | 3.776926 | 3.728198 | 3.805614 | 5.454258 |
| 3 | rowQuantiles(X[cols, rows]) | 3.289315 | 3.676176 | 3.952174 | 3.743796 | 3.841694 | 13.341035 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowQuantiles(X, cols, rows) | 1.028816 | 1.041525 | 1.056164 | 1.049003 | 1.048502 | 1.347081 |
| 3 | rowQuantiles(X[cols, rows]) | 1.029834 | 1.044614 | 1.105169 | 1.053392 | 1.058443 | 3.294939 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x100 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 2.929666 | 3.283390 | 3.354438 | 3.318930 | 3.384416 | 4.841613 |
| 2 | rowQuantiles_X_S | 3.194023 | 3.519172 | 3.576079 | 3.554039 | 3.629571 | 4.048947 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowQuantiles_X_S | 1.090234 | 1.071811 | 1.066074 | 1.070839 | 1.072436 | 0.8362806 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 30.55 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowQuantiles_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 19:05:11 (+0200 UTC). Powered by RSP.