matrixStats.benchmarks


colMeans2() and rowMeans2() benchmarks on subsetted computation

This report benchmark the performance of colMeans2() and rowMeans2() on subsetted computation.

Data type “integer”

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 integer matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5239254 279.9    8529671 455.6  8529671 455.6
Vcells 10067968  76.9   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5231316 279.4    8529671 455.6  8529671 455.6
Vcells 10042070  76.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.001847 0.0019260 0.0029480 0.0019790 0.0020720 0.090764
2 colMeans2(X, rows, cols) 0.002228 0.0023255 0.0024960 0.0023960 0.0024840 0.004669
3 colMeans2(X[rows, cols]) 0.002640 0.0028950 0.0032197 0.0030255 0.0031415 0.007819
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 colMeans2(X, rows, cols) 1.206281 1.207425 0.8466872 1.210713 1.198842 0.0514411
3 colMeans2(X[rows, cols]) 1.429345 1.503115 1.0921722 1.528802 1.516168 0.0861465

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.001876 0.0019715 0.0020668 0.0020075 0.0020920 0.004386
2 rowMeans2(X, cols, rows) 0.002286 0.0023715 0.0033519 0.0024455 0.0025430 0.090527
3 rowMeans2(X[cols, rows]) 0.002684 0.0029440 0.0031055 0.0030285 0.0031615 0.005362
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.218550 1.202891 1.621821 1.218182 1.215583 20.639991
3 rowMeans2(X[cols, rows]) 1.430704 1.493279 1.502610 1.508593 1.511233 1.222526

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 1.847 1.9260 2.94796 1.9790 2.072 90.764
2 rowMeans2_X_S 1.876 1.9715 2.06677 2.0075 2.092 4.386
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 rowMeans2_X_S 1.015701 1.023624 0.7010848 1.014401 1.009653 0.0483231

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 integer matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5229718 279.3    8529671 455.6  8529671 455.6
Vcells 9709517  74.1   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5229694 279.3    8529671 455.6  8529671 455.6
Vcells 9714570  74.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.011503 0.0117600 0.0119683 0.0118845 0.0120145 0.014024
2 colMeans2(X, rows, cols) 0.013068 0.0136855 0.0138894 0.0138315 0.0140065 0.017305
3 colMeans2(X[rows, cols]) 0.022900 0.0232510 0.0245251 0.0234165 0.0239040 0.058453
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colMeans2(X, rows, cols) 1.136051 1.163733 1.160514 1.163827 1.165800 1.233956
3 colMeans2(X[rows, cols]) 1.990785 1.977126 2.049174 1.970339 1.989596 4.168069

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2(X, cols, rows) 0.012217 0.0128180 0.0137361 0.0130705 0.0132990 0.065091
1 rowMeans2_X_S 0.012601 0.0131290 0.0135982 0.0133280 0.0135975 0.025668
3 rowMeans2(X[cols, rows]) 0.023290 0.0243555 0.0250001 0.0246105 0.0250065 0.042236
  expr min lq mean median uq max
2 rowMeans2(X, cols, rows) 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
1 rowMeans2_X_S 1.031432 1.024263 0.9899586 1.019701 1.022445 0.3943402
3 rowMeans2(X[cols, rows]) 1.906360 1.900101 1.8200274 1.882904 1.880329 0.6488762

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 11.503 11.760 11.96829 11.8845 12.0145 14.024
2 rowMeans2_X_S 12.601 13.129 13.59816 13.3280 13.5975 25.668
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2_X_S 1.095453 1.116412 1.136182 1.121461 1.131757 1.830291

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 integer matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5230460 279.4    8529671 455.6  8529671 455.6
Vcells 9713555  74.2   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5230436 279.4    8529671 455.6  8529671 455.6
Vcells 9718608  74.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.010211 0.0103110 0.0105182 0.0104000 0.010501 0.018538
2 colMeans2(X, rows, cols) 0.014302 0.0147365 0.0152329 0.0151135 0.015476 0.020525
3 colMeans2(X[rows, cols]) 0.022029 0.0223415 0.0231530 0.0224825 0.022771 0.073242
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colMeans2(X, rows, cols) 1.400646 1.429202 1.448240 1.453221 1.473764 1.107185
3 colMeans2(X[rows, cols]) 2.157379 2.166764 2.201224 2.161779 2.168460 3.950912

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.011739 0.011967 0.0124367 0.0122410 0.0124825 0.026305
2 rowMeans2(X, cols, rows) 0.014218 0.014746 0.0151680 0.0149640 0.0154550 0.020347
3 rowMeans2(X[cols, rows]) 0.024703 0.025286 0.0263237 0.0259705 0.0263695 0.064014
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowMeans2(X, cols, rows) 1.211176 1.232222 1.219617 1.222449 1.238133 0.7735031
3 rowMeans2(X[cols, rows]) 2.104353 2.112977 2.116609 2.121599 2.112518 2.4335297

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 10.211 10.311 10.51822 10.400 10.5010 18.538
2 rowMeans2_X_S 11.739 11.967 12.43672 12.241 12.4825 26.305
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2_X_S 1.149642 1.160605 1.182398 1.177019 1.188696 1.418977

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 integer matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5230664 279.4    8529671 455.6  8529671 455.6
Vcells 9714428  74.2   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5230640 279.4    8529671 455.6  8529671 455.6
Vcells 9719481  74.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.015216 0.0154655 0.0162802 0.0158905 0.0161560 0.034637
2 colMeans2(X, rows, cols) 0.016921 0.0173415 0.0181420 0.0176450 0.0182960 0.033459
3 colMeans2(X[rows, cols]) 0.028564 0.0289960 0.0300537 0.0299655 0.0305085 0.042075
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colMeans2(X, rows, cols) 1.112053 1.121302 1.114357 1.110412 1.132459 0.9659901
3 colMeans2(X[rows, cols]) 1.877234 1.874883 1.846021 1.885749 1.888370 1.2147415

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.012894 0.0132290 0.0135355 0.0134410 0.0136680 0.018662
2 rowMeans2(X, cols, rows) 0.015274 0.0157130 0.0164131 0.0159680 0.0162695 0.039937
3 rowMeans2(X[cols, rows]) 0.023609 0.0239345 0.0248161 0.0242625 0.0249900 0.039256
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.184582 1.187769 1.212594 1.188007 1.190335 2.140017
3 rowMeans2(X[cols, rows]) 1.831007 1.809245 1.833409 1.805111 1.828358 2.103526

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+10x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 12.894 13.2290 13.53550 13.4410 13.668 18.662
1 colMeans2_X_S 15.216 15.4655 16.28025 15.8905 16.156 34.637
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.180084 1.16906 1.202782 1.182241 1.182031 1.856018

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 integer matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5230877 279.4    8529671 455.6  8529671 455.6
Vcells 9737105  74.3   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5230853 279.4    8529671 455.6  8529671 455.6
Vcells 9787158  74.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.072860 0.076004 0.0825173 0.0791475 0.0871470 0.120449
2 colMeans2(X, rows, cols) 0.082647 0.085856 0.0943815 0.0900305 0.1017870 0.172689
3 colMeans2(X[rows, cols]) 0.153570 0.161455 0.1768899 0.1698555 0.1904865 0.219053
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colMeans2(X, rows, cols) 1.134326 1.129625 1.143778 1.137503 1.167992 1.433711
3 colMeans2(X[rows, cols]) 2.107741 2.124296 2.143670 2.146063 2.185807 1.818637

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.081177 0.089784 0.0992917 0.0962035 0.1078760 0.162566
2 rowMeans2(X, cols, rows) 0.100575 0.107135 0.1175959 0.1116880 0.1270455 0.197445
3 rowMeans2(X[cols, rows]) 0.152274 0.168322 0.1830259 0.1753465 0.1962145 0.230493
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.238959 1.193253 1.184348 1.160956 1.177699 1.214553
3 rowMeans2(X[cols, rows]) 1.875827 1.874744 1.843315 1.822662 1.818889 1.417843

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+100x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 72.860 76.004 82.51728 79.1475 87.147 120.449
2 rowMeans2_X_S 81.177 89.784 99.29170 96.2035 107.876 162.566
  expr min lq mean median uq max
1 colMeans2_X_S 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2_X_S 1.11415 1.181306 1.203284 1.215496 1.237863 1.349667

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 integer matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231087 279.4    8529671 455.6  8529671 455.6
Vcells 9737889  74.3   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231063 279.4    8529671 455.6  8529671 455.6
Vcells 9787942  74.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.064757 0.067414 0.0741388 0.0698780 0.0782725 0.113074
2 colMeans2(X, rows, cols) 0.073908 0.077577 0.0856458 0.0837435 0.0919200 0.103769
3 colMeans2(X[rows, cols]) 0.142508 0.151349 0.1670202 0.1629915 0.1827705 0.242255
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colMeans2(X, rows, cols) 1.141313 1.150755 1.155210 1.198424 1.174359 0.9177088
3 colMeans2(X[rows, cols]) 2.200658 2.245068 2.252804 2.332515 2.335054 2.1424465

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.073403 0.0818965 0.0904302 0.0881815 0.0957480 0.122820
2 rowMeans2(X, cols, rows) 0.095182 0.1109920 0.1188638 0.1152325 0.1239635 0.215424
3 rowMeans2(X[cols, rows]) 0.144924 0.1677190 0.1825400 0.1752200 0.1982145 0.253458
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.296704 1.355272 1.314426 1.306765 1.294685 1.753981
3 rowMeans2(X[cols, rows]) 1.974361 2.047939 2.018574 1.987038 2.070169 2.063654

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on integer+1000x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 64.757 67.4140 74.13878 69.8780 78.2725 113.074
2 rowMeans2_X_S 73.403 81.8965 90.43019 88.1815 95.7480 122.820
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2_X_S 1.133514 1.214829 1.219742 1.261935 1.223265 1.086191

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 double matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231305 279.4    8529671 455.6  8529671 455.6
Vcells 9828998  75.0   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231272 279.4    8529671 455.6  8529671 455.6
Vcells 9829136  75.0   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colMeans2_X_S 0.001937 0.0020190 0.0022909 0.0020575 0.0021515 0.019771
2 colMeans2(X, rows, cols) 0.002324 0.0023885 0.0025168 0.0024235 0.0025670 0.004859
3 colMeans2(X[rows, cols]) 0.002773 0.0030760 0.0032504 0.0031420 0.0032655 0.008533
  expr min lq mean median uq max
1 colMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colMeans2(X, rows, cols) 1.199793 1.183011 1.098594 1.177886 1.193121 0.2457640
3 colMeans2(X[rows, cols]) 1.431595 1.523527 1.418821 1.527096 1.517778 0.4315917

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.001887 0.0019690 0.0020623 0.0020050 0.0020795 0.004996
2 rowMeans2(X, cols, rows) 0.002290 0.0023945 0.0027032 0.0024895 0.0026095 0.020400
3 rowMeans2(X[cols, rows]) 0.002780 0.0030365 0.0031873 0.0030870 0.0032415 0.006183
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.213566 1.216100 1.310781 1.241646 1.254869 4.083267
3 rowMeans2(X[cols, rows]) 1.473238 1.542153 1.545530 1.539651 1.558788 1.237590

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 1.887 1.969 2.06229 2.0050 2.0795 4.996
1 colMeans2_X_S 1.937 2.019 2.29091 2.0575 2.1515 19.771
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.026497 1.025394 1.110857 1.026185 1.034624 3.957366

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 double matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231503 279.4    8529671 455.6  8529671 455.6
Vcells 9834953  75.1   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231479 279.4    8529671 455.6  8529671 455.6
Vcells 9845006  75.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 0.016364 0.0173960 0.0179279 0.0178595 0.0182525 0.026306
1 colMeans2_X_S 0.020819 0.0218145 0.0224671 0.0225680 0.0227660 0.037107
3 colMeans2(X[rows, cols]) 0.035665 0.0374555 0.0390382 0.0388450 0.0391190 0.067728
  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.272244 1.253995 1.253189 1.263641 1.247281 1.410591
3 colMeans2(X[rows, cols]) 2.179479 2.153110 2.177510 2.175033 2.143213 2.574622

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2(X, cols, rows) 0.016692 0.0173425 0.0180302 0.0178205 0.0181035 0.042894
1 rowMeans2_X_S 0.016760 0.0176815 0.0181757 0.0182380 0.0185115 0.024771
3 rowMeans2(X[cols, rows]) 0.031850 0.0333835 0.0345505 0.0346645 0.0349370 0.049181
  expr min lq mean median uq max
2 rowMeans2(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowMeans2_X_S 1.004074 1.019547 1.008068 1.023428 1.022537 0.5774934
3 rowMeans2(X[cols, rows]) 1.908100 1.924953 1.916252 1.945204 1.929848 1.1465706

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 16.760 17.6815 18.17570 18.238 18.5115 24.771
1 colMeans2_X_S 20.819 21.8145 22.46708 22.568 22.7660 37.107
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000
1 colMeans2_X_S 1.242184 1.233747 1.236105 1.237416 1.22983 1.498002

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 double matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231702 279.5    8529671 455.6  8529671 455.6
Vcells 9836359  75.1   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231678 279.5    8529671 455.6  8529671 455.6
Vcells 9846412  75.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 0.017148 0.0183160 0.0186735 0.0187245 0.018959 0.022967
1 colMeans2_X_S 0.019208 0.0200920 0.0206080 0.0207725 0.020959 0.023622
3 colMeans2(X[rows, cols]) 0.034766 0.0363295 0.0375867 0.0367140 0.037854 0.067148
  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.120131 1.096964 1.103597 1.109375 1.105491 1.028519
3 colMeans2(X[rows, cols]) 2.027408 1.983484 2.012834 1.960747 1.996624 2.923673

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.015285 0.0160695 0.0167367 0.0165120 0.0168140 0.031157
2 rowMeans2(X, cols, rows) 0.017499 0.0184060 0.0188089 0.0188765 0.0190935 0.022353
3 rowMeans2(X[cols, rows]) 0.033629 0.0352120 0.0362132 0.0364040 0.0367485 0.071494
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowMeans2(X, cols, rows) 1.144848 1.145400 1.123811 1.143199 1.135571 0.7174311
3 rowMeans2(X[cols, rows]) 2.200131 2.191232 2.163702 2.204700 2.185589 2.2946368

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x10 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 15.285 16.0695 16.73669 16.5120 16.814 31.157
1 colMeans2_X_S 19.208 20.0920 20.60805 20.7725 20.959 23.622
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.000000 1.00000 1.000000 1.000000 1.0000000
1 colMeans2_X_S 1.256657 1.250319 1.23131 1.258025 1.246521 0.7581603

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 double matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231906 279.5    8529671 455.6  8529671 455.6
Vcells 9836494  75.1   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5231882 279.5    8529671 455.6  8529671 455.6
Vcells 9846547  75.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 0.023945 0.024541 0.0255356 0.0253150 0.0257285 0.046420
1 colMeans2_X_S 0.025012 0.025952 0.0266161 0.0265230 0.0269200 0.042034
3 colMeans2(X[rows, cols]) 0.044219 0.045548 0.0463394 0.0463295 0.0469120 0.052864
  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 colMeans2_X_S 1.044561 1.057496 1.042313 1.047719 1.046310 0.9055149
3 colMeans2(X[rows, cols]) 1.846690 1.855996 1.814699 1.830121 1.823348 1.1388195

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.020393 0.021392 0.0219239 0.0219955 0.022301 0.027068
2 rowMeans2(X, cols, rows) 0.022744 0.023988 0.0249798 0.0248580 0.025115 0.051117
3 rowMeans2(X[cols, rows]) 0.035782 0.037693 0.0389474 0.0390735 0.039362 0.053669
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.115285 1.121354 1.139387 1.130140 1.126183 1.888466
3 rowMeans2(X[cols, rows]) 1.754622 1.762014 1.776482 1.776431 1.765033 1.982747

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+10x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 20.393 21.392 21.92387 21.9955 22.301 27.068
1 colMeans2_X_S 25.012 25.952 26.61607 26.5230 26.920 42.034
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.226499 1.213164 1.214022 1.205838 1.207121 1.552904

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 double matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5232119 279.5    8529671 455.6  8529671 455.6
Vcells 9881967  75.4   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5232095 279.5    8529671 455.6  8529671 455.6
Vcells 9982020  76.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 0.093012 0.1019725 0.1165956 0.1137045 0.1283545 0.239620
1 colMeans2_X_S 0.124963 0.1393400 0.1593735 0.1571800 0.1755740 0.226523
3 colMeans2(X[rows, cols]) 0.224138 0.2515870 0.2842428 0.2785885 0.3118385 0.374830
  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 colMeans2_X_S 1.343515 1.366447 1.366892 1.382355 1.367884 0.9453426
3 colMeans2(X[rows, cols]) 2.409775 2.467204 2.437852 2.450110 2.429510 1.5642684

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.107334 0.124809 0.1383345 0.1290975 0.1491210 0.313997
2 rowMeans2(X, cols, rows) 0.112252 0.124729 0.1390577 0.1324275 0.1445240 0.267007
3 rowMeans2(X[cols, rows]) 0.216403 0.244320 0.2705480 0.2606555 0.2951735 0.447450
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000
2 rowMeans2(X, cols, rows) 1.045820 0.999359 1.005228 1.025794 0.9691727 0.8503489
3 rowMeans2(X[cols, rows]) 2.016164 1.957551 1.955752 2.019059 1.9794228 1.4250136

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+100x1000 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 107.334 124.809 138.3345 129.0975 149.121 313.997
1 colMeans2_X_S 124.963 139.340 159.3735 157.1800 175.574 226.523
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 colMeans2_X_S 1.164244 1.116426 1.152088 1.217529 1.177393 0.7214177

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 double matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5232329 279.5    8529671 455.6  8529671 455.6
Vcells 9882108  75.4   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colMeans2_X_S = colMeans2(X_S, na.rm = FALSE), `colMeans2(X, rows, cols)` = colMeans2(X, 
+     rows = rows, cols = cols, na.rm = FALSE), `colMeans2(X[rows, cols])` = colMeans2(X[rows, cols], 
+     na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5232305 279.5    8529671 455.6  8529671 455.6
Vcells 9982161  76.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowMeans2_X_S = rowMeans2(X_S, na.rm = FALSE), `rowMeans2(X, cols, rows)` = rowMeans2(X, 
+     rows = cols, cols = rows, na.rm = FALSE), `rowMeans2(X[cols, rows])` = rowMeans2(X[cols, rows], 
+     na.rm = FALSE), unit = "ms")

Table: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 0.087341 0.0955840 0.1081725 0.1041995 0.1177120 0.168556
1 colMeans2_X_S 0.122635 0.1336755 0.1506216 0.1463645 0.1580090 0.250562
3 colMeans2(X[rows, cols]) 0.219466 0.2412715 0.2736795 0.2705760 0.2947245 0.434267
  expr min lq mean median uq max
2 colMeans2(X, rows, cols) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.404094 1.398513 1.392421 1.404656 1.342335 1.486521
3 colMeans2(X[rows, cols]) 2.512749 2.524183 2.530029 2.596711 2.503776 2.576396

Table: Benchmarking of rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowMeans2_X_S 0.098873 0.1072580 0.1179329 0.1155910 0.1253360 0.194452
2 rowMeans2(X, cols, rows) 0.106817 0.1176845 0.1293736 0.1248245 0.1341950 0.304632
3 rowMeans2(X[cols, rows]) 0.202904 0.2246740 0.2468780 0.2393140 0.2738205 0.323391
  expr min lq mean median uq max
1 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowMeans2(X, cols, rows) 1.080345 1.097209 1.097011 1.079881 1.070682 1.566618
3 rowMeans2(X[cols, rows]) 2.052168 2.094706 2.093377 2.070352 2.184692 1.663089

Figure: Benchmarking of colMeans2_X_S(), colMeans2(X, rows, cols)() and colMeans2(X[rows, cols])() on double+1000x100 data as well as rowMeans2_X_S(), rowMeans2(X, cols, rows)() and rowMeans2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowMeans2_X_S 98.873 107.2580 117.9329 115.5910 125.336 194.452
1 colMeans2_X_S 122.635 133.6755 150.6216 146.3645 158.009 250.562
  expr min lq mean median uq max
2 rowMeans2_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colMeans2_X_S 1.240328 1.246299 1.277181 1.266228 1.260683 1.288555

Figure: Benchmarking of colMeans2_X_S() and rowMeans2_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 23.28 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colRowMeans2_subset')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 18:58:35 (+0200 UTC). Powered by RSP.