This report benchmark the performance of colLogSumExps() and rowLogSumExps() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "double")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5224956 279.1 8529671 455.6 8529671 455.6
Vcells 10071502 76.9 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colLogSumExps_X_S = colLogSumExps(X_S, na.rm = FALSE), `colLogSumExps(X, rows, cols)` = colLogSumExps(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colLogSumExps(X[rows, cols])` = colLogSumExps(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216600 278.6 8529671 455.6 8529671 455.6
Vcells 10044274 76.7 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowLogSumExps_X_S = rowLogSumExps(X_S, na.rm = FALSE), `rowLogSumExps(X, cols, rows)` = rowLogSumExps(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowLogSumExps(X[cols, rows])` = rowLogSumExps(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 0.003153 | 0.0032055 | 0.0042499 | 0.003255 | 0.003335 | 0.097414 |
| 2 | colLogSumExps(X, rows, cols) | 0.003507 | 0.0036035 | 0.0037238 | 0.003647 | 0.003753 | 0.006518 |
| 3 | colLogSumExps(X[rows, cols]) | 0.004060 | 0.0042820 | 0.0045311 | 0.004370 | 0.004523 | 0.013022 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
| 2 | colLogSumExps(X, rows, cols) | 1.112274 | 1.124162 | 0.876208 | 1.12043 | 1.125337 | 0.0669103 |
| 3 | colLogSumExps(X[rows, cols]) | 1.287662 | 1.335829 | 1.066158 | 1.34255 | 1.356222 | 0.1336769 |
Table: Benchmarking of rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 0.003180 | 0.0032400 | 0.0033692 | 0.0032845 | 0.0033800 | 0.006432 |
| 2 | rowLogSumExps(X, cols, rows) | 0.003584 | 0.0036505 | 0.0047052 | 0.0037270 | 0.0038125 | 0.096998 |
| 3 | rowLogSumExps(X[cols, rows]) | 0.004095 | 0.0043450 | 0.0044783 | 0.0044225 | 0.0045425 | 0.006256 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowLogSumExps(X, cols, rows) | 1.127044 | 1.126697 | 1.396514 | 1.134724 | 1.127959 | 15.0805348 |
| 3 | rowLogSumExps(X[cols, rows]) | 1.287736 | 1.341049 | 1.329196 | 1.346476 | 1.343935 | 0.9726368 |
Figure: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 10x10 data as well as rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 3.153 | 3.2055 | 4.24995 | 3.2550 | 3.335 | 97.414 |
| 2 | rowLogSumExps_X_S | 3.180 | 3.2400 | 3.36921 | 3.2845 | 3.380 | 6.432 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowLogSumExps_X_S | 1.008563 | 1.010763 | 0.7927646 | 1.009063 | 1.013493 | 0.0660275 |
Figure: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5215243 278.6 8529671 455.6 8529671 455.6
Vcells 9714948 74.2 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colLogSumExps_X_S = colLogSumExps(X_S, na.rm = FALSE), `colLogSumExps(X, rows, cols)` = colLogSumExps(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colLogSumExps(X[rows, cols])` = colLogSumExps(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5215219 278.6 8529671 455.6 8529671 455.6
Vcells 9725001 74.2 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowLogSumExps_X_S = rowLogSumExps(X_S, na.rm = FALSE), `rowLogSumExps(X, cols, rows)` = rowLogSumExps(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowLogSumExps(X[cols, rows])` = rowLogSumExps(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 0.090567 | 0.0967505 | 0.1061635 | 0.1031355 | 0.1137425 | 0.138596 |
| 2 | colLogSumExps(X, rows, cols) | 0.093520 | 0.0998940 | 0.1083768 | 0.1058630 | 0.1177440 | 0.137605 |
| 3 | colLogSumExps(X[rows, cols]) | 0.102416 | 0.1090815 | 0.1198994 | 0.1162185 | 0.1291190 | 0.177860 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colLogSumExps(X, rows, cols) | 1.032606 | 1.032491 | 1.020849 | 1.026446 | 1.035180 | 0.9928497 |
| 3 | colLogSumExps(X[rows, cols]) | 1.130831 | 1.127452 | 1.129385 | 1.126853 | 1.135187 | 1.2832982 |
Table: Benchmarking of rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 0.092120 | 0.098513 | 0.1101811 | 0.1080375 | 0.1198965 | 0.140728 |
| 2 | rowLogSumExps(X, cols, rows) | 0.093270 | 0.105276 | 0.1114590 | 0.1091665 | 0.1173100 | 0.163011 |
| 3 | rowLogSumExps(X[cols, rows]) | 0.103799 | 0.112263 | 0.1219352 | 0.1211630 | 0.1300495 | 0.157524 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.0000000 | 1.000000 |
| 2 | rowLogSumExps(X, cols, rows) | 1.012484 | 1.068651 | 1.011598 | 1.01045 | 0.9784272 | 1.158341 |
| 3 | rowLogSumExps(X[cols, rows]) | 1.126780 | 1.139576 | 1.106679 | 1.12149 | 1.0846814 | 1.119351 |
Figure: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 100x100 data as well as rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 90.567 | 96.7505 | 106.1635 | 103.1355 | 113.7425 | 138.596 |
| 2 | rowLogSumExps_X_S | 92.120 | 98.5130 | 110.1811 | 108.0375 | 119.8965 | 140.728 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
| 2 | rowLogSumExps_X_S | 1.017148 | 1.018217 | 1.037844 | 1.04753 | 1.054105 | 1.015383 |
Figure: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5215984 278.6 8529671 455.6 8529671 455.6
Vcells 9718996 74.2 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colLogSumExps_X_S = colLogSumExps(X_S, na.rm = FALSE), `colLogSumExps(X, rows, cols)` = colLogSumExps(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colLogSumExps(X[rows, cols])` = colLogSumExps(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5215960 278.6 8529671 455.6 8529671 455.6
Vcells 9729049 74.3 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowLogSumExps_X_S = rowLogSumExps(X_S, na.rm = FALSE), `rowLogSumExps(X, cols, rows)` = rowLogSumExps(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowLogSumExps(X[cols, rows])` = rowLogSumExps(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 0.089180 | 0.0951845 | 0.1021562 | 0.0983575 | 0.1092525 | 0.125407 |
| 2 | colLogSumExps(X, rows, cols) | 0.090603 | 0.0967450 | 0.1049659 | 0.1027125 | 0.1104635 | 0.133387 |
| 3 | colLogSumExps(X[rows, cols]) | 0.098990 | 0.1050460 | 0.1150448 | 0.1118800 | 0.1242225 | 0.171096 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colLogSumExps(X, rows, cols) | 1.015956 | 1.016395 | 1.027504 | 1.044277 | 1.011084 | 1.063633 |
| 3 | colLogSumExps(X[rows, cols]) | 1.110002 | 1.103604 | 1.126166 | 1.137483 | 1.137022 | 1.364326 |
Table: Benchmarking of rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 0.090638 | 0.1002485 | 0.1075956 | 0.104025 | 0.1145445 | 0.184519 |
| 2 | rowLogSumExps(X, cols, rows) | 0.091644 | 0.0975770 | 0.1099123 | 0.105153 | 0.1159690 | 0.200519 |
| 3 | rowLogSumExps(X[cols, rows]) | 0.102591 | 0.1124205 | 0.1244612 | 0.119713 | 0.1337920 | 0.216149 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowLogSumExps(X, cols, rows) | 1.011099 | 0.9733512 | 1.021532 | 1.010844 | 1.012436 | 1.086712 |
| 3 | rowLogSumExps(X[cols, rows]) | 1.131876 | 1.1214183 | 1.156750 | 1.150810 | 1.168035 | 1.171419 |
Figure: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 1000x10 data as well as rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 89.180 | 95.1845 | 102.1562 | 98.3575 | 109.2525 | 125.407 |
| 2 | rowLogSumExps_X_S | 90.638 | 100.2485 | 107.5956 | 104.0250 | 114.5445 | 184.519 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowLogSumExps_X_S | 1.016349 | 1.053202 | 1.053246 | 1.057621 | 1.048438 | 1.471361 |
Figure: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216188 278.6 8529671 455.6 8529671 455.6
Vcells 9719923 74.2 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colLogSumExps_X_S = colLogSumExps(X_S, na.rm = FALSE), `colLogSumExps(X, rows, cols)` = colLogSumExps(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colLogSumExps(X[rows, cols])` = colLogSumExps(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216164 278.6 8529671 455.6 8529671 455.6
Vcells 9729976 74.3 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowLogSumExps_X_S = rowLogSumExps(X_S, na.rm = FALSE), `rowLogSumExps(X, cols, rows)` = rowLogSumExps(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowLogSumExps(X[cols, rows])` = rowLogSumExps(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 0.102946 | 0.1111695 | 0.1262989 | 0.1261630 | 0.137209 | 0.186332 |
| 2 | colLogSumExps(X, rows, cols) | 0.107643 | 0.1187910 | 0.1294139 | 0.1267515 | 0.136894 | 0.193177 |
| 3 | colLogSumExps(X[rows, cols]) | 0.116994 | 0.1310735 | 0.1416186 | 0.1394095 | 0.150752 | 0.185741 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 2 | colLogSumExps(X, rows, cols) | 1.045626 | 1.068558 | 1.024664 | 1.004665 | 0.9977042 | 1.0367355 |
| 3 | colLogSumExps(X[rows, cols]) | 1.136460 | 1.179042 | 1.121297 | 1.104995 | 1.0987034 | 0.9968282 |
Table: Benchmarking of rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 0.106905 | 0.1176905 | 0.1297395 | 0.1253305 | 0.1380135 | 0.181775 |
| 2 | rowLogSumExps(X, cols, rows) | 0.112772 | 0.1228200 | 0.1352408 | 0.1333800 | 0.1414230 | 0.208652 |
| 3 | rowLogSumExps(X[cols, rows]) | 0.118833 | 0.1296295 | 0.1429067 | 0.1386620 | 0.1534275 | 0.193409 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowLogSumExps(X, cols, rows) | 1.054881 | 1.043585 | 1.042403 | 1.064226 | 1.024704 | 1.147859 |
| 3 | rowLogSumExps(X[cols, rows]) | 1.111576 | 1.101444 | 1.101490 | 1.106371 | 1.111685 | 1.064002 |
Figure: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 10x1000 data as well as rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowLogSumExps_X_S | 106.905 | 117.6905 | 129.7395 | 125.3305 | 138.0135 | 181.775 |
| 1 | colLogSumExps_X_S | 102.946 | 111.1695 | 126.2989 | 126.1630 | 137.2090 | 186.332 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowLogSumExps_X_S | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.00000 |
| 1 | colLogSumExps_X_S | 0.9629671 | 0.944592 | 0.9734809 | 1.006642 | 0.9941709 | 1.02507 |
Figure: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216401 278.6 8529671 455.6 8529671 455.6
Vcells 9764656 74.5 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colLogSumExps_X_S = colLogSumExps(X_S, na.rm = FALSE), `colLogSumExps(X, rows, cols)` = colLogSumExps(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colLogSumExps(X[rows, cols])` = colLogSumExps(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216377 278.6 8529671 455.6 8529671 455.6
Vcells 9864709 75.3 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowLogSumExps_X_S = rowLogSumExps(X_S, na.rm = FALSE), `rowLogSumExps(X, cols, rows)` = rowLogSumExps(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowLogSumExps(X[cols, rows])` = rowLogSumExps(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 0.781934 | 0.8967560 | 0.9067277 | 0.8979115 | 0.9010825 | 1.456129 |
| 2 | colLogSumExps(X, rows, cols) | 0.805189 | 0.9229225 | 0.9228147 | 0.9256165 | 0.9292315 | 1.360920 |
| 3 | colLogSumExps(X[rows, cols]) | 0.880037 | 1.0061050 | 1.0225432 | 1.0087370 | 1.0196910 | 1.341322 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colLogSumExps(X, rows, cols) | 1.029740 | 1.029179 | 1.017742 | 1.030855 | 1.031239 | 0.934615 |
| 3 | colLogSumExps(X[rows, cols]) | 1.125462 | 1.121938 | 1.127729 | 1.123426 | 1.131629 | 0.921156 |
Table: Benchmarking of rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 0.827333 | 0.9208120 | 0.9433978 | 0.923690 | 0.9504715 | 1.451742 |
| 2 | rowLogSumExps(X, cols, rows) | 0.849239 | 0.9464205 | 0.9543103 | 0.948168 | 0.9749475 | 1.389180 |
| 3 | rowLogSumExps(X[cols, rows]) | 0.929286 | 1.0340740 | 1.0589153 | 1.043933 | 1.0746860 | 1.459369 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowLogSumExps(X, cols, rows) | 1.026478 | 1.027811 | 1.011567 | 1.026500 | 1.025751 | 0.9569056 |
| 3 | rowLogSumExps(X[cols, rows]) | 1.123231 | 1.123002 | 1.122448 | 1.130177 | 1.130687 | 1.0052537 |
Figure: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 100x1000 data as well as rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 781.934 | 896.756 | 906.7277 | 897.9115 | 901.0825 | 1456.129 |
| 2 | rowLogSumExps_X_S | 827.333 | 920.812 | 943.3978 | 923.6900 | 950.4715 | 1451.742 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowLogSumExps_X_S | 1.05806 | 1.026826 | 1.040442 | 1.028709 | 1.054811 | 0.9969872 |
Figure: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216611 278.6 8529671 455.6 8529671 455.6
Vcells 9765483 74.6 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colLogSumExps_X_S = colLogSumExps(X_S, na.rm = FALSE), `colLogSumExps(X, rows, cols)` = colLogSumExps(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colLogSumExps(X[rows, cols])` = colLogSumExps(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5216587 278.6 8529671 455.6 8529671 455.6
Vcells 9865536 75.3 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowLogSumExps_X_S = rowLogSumExps(X_S, na.rm = FALSE), `rowLogSumExps(X, cols, rows)` = rowLogSumExps(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowLogSumExps(X[cols, rows])` = rowLogSumExps(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 0.745673 | 0.8376020 | 0.8636380 | 0.8539335 | 0.858835 | 1.246552 |
| 2 | colLogSumExps(X, rows, cols) | 0.764129 | 0.8517975 | 0.8834998 | 0.8768770 | 0.883215 | 1.180537 |
| 3 | colLogSumExps(X[rows, cols]) | 0.839221 | 0.9145985 | 0.9506828 | 0.9604135 | 0.969277 | 1.420172 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colLogSumExps(X, rows, cols) | 1.024751 | 1.016948 | 1.022998 | 1.026868 | 1.028387 | 0.9470419 |
| 3 | colLogSumExps(X[rows, cols]) | 1.125455 | 1.091925 | 1.100788 | 1.124694 | 1.128595 | 1.1392802 |
Table: Benchmarking of rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowLogSumExps(X, cols, rows) | 0.783550 | 0.8507085 | 0.8992607 | 0.875669 | 0.9011415 | 1.434717 |
| 1 | rowLogSumExps_X_S | 0.785798 | 0.8754500 | 0.8941442 | 0.885309 | 0.9071225 | 1.172982 |
| 3 | rowLogSumExps(X[cols, rows]) | 0.887504 | 0.9777690 | 1.0092014 | 1.000114 | 1.0253060 | 1.411025 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowLogSumExps(X, cols, rows) | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 1 | rowLogSumExps_X_S | 1.002869 | 1.029083 | 0.9943103 | 1.011009 | 1.006637 | 0.8175703 |
| 3 | rowLogSumExps(X[cols, rows]) | 1.132670 | 1.149358 | 1.1222569 | 1.142114 | 1.137786 | 0.9834866 |
Figure: Benchmarking of colLogSumExps_X_S(), colLogSumExps(X, rows, cols)() and colLogSumExps(X[rows, cols])() on 1000x100 data as well as rowLogSumExps_X_S(), rowLogSumExps(X, cols, rows)() and rowLogSumExps(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 745.673 | 837.602 | 863.6380 | 853.9335 | 858.8350 | 1246.552 |
| 2 | rowLogSumExps_X_S | 785.798 | 875.450 | 894.1441 | 885.3090 | 907.1225 | 1172.982 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colLogSumExps_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowLogSumExps_X_S | 1.05381 | 1.045186 | 1.035323 | 1.036742 | 1.056224 | 0.9409812 |
Figure: Benchmarking of colLogSumExps_X_S() and rowLogSumExps_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 12.18 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowLogSumExps_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 18:55:55 (+0200 UTC). Powered by RSP.