matrixStats.benchmarks


colCummins() and rowCummins() benchmarks on subsetted computation

This report benchmark the performance of colCummins() and rowCummins() on subsetted computation.

Data type “integer”

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 integer matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5193783 277.4    8529671 455.6  8529671 455.6
Vcells 9739225  74.4   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185420 277.0    8529671 455.6  8529671 455.6
Vcells 9711945  74.1   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.001723 0.0019105 0.0029729 0.0019780 0.0020995 0.097800
2 colCummins(X, rows, cols) 0.001967 0.0022870 0.0024131 0.0023620 0.0024365 0.004847
3 colCummins(X[rows, cols]) 0.002574 0.0029750 0.0031610 0.0030825 0.0032120 0.010422
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colCummins(X, rows, cols) 1.141614 1.197069 0.811703 1.194136 1.160514 0.0495603
3 colCummins(X[rows, cols]) 1.493906 1.557184 1.063268 1.558392 1.529888 0.1065644

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.001747 0.0020055 0.0021237 0.0020825 0.0021585 0.004422
2 rowCummins(X, cols, rows) 0.002125 0.0023695 0.0033469 0.0024725 0.0025790 0.085197
3 rowCummins(X[cols, rows]) 0.002817 0.0030770 0.0032745 0.0031445 0.0032790 0.009464
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.216371 1.181501 1.575995 1.187275 1.194811 19.266621
3 rowCummins(X[cols, rows]) 1.612478 1.534281 1.541918 1.509964 1.519111 2.140208

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 1.723 1.9105 2.97291 1.9780 2.0995 97.800
2 rowCummins_X_S 1.747 2.0055 2.12368 2.0825 2.1585 4.422
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 rowCummins_X_S 1.013929 1.049725 0.7143439 1.052831 1.028102 0.0452147

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 integer matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5184048 276.9    8529671 455.6  8529671 455.6
Vcells 9380529  71.6   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5184024 276.9    8529671 455.6  8529671 455.6
Vcells 9385582  71.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.015989 0.016298 0.0165247 0.0163960 0.0165695 0.021165
2 colCummins(X, rows, cols) 0.016327 0.016922 0.0172117 0.0170985 0.0172670 0.021670
3 colCummins(X[rows, cols]) 0.027582 0.027799 0.0282629 0.0278985 0.0280635 0.052871
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colCummins(X, rows, cols) 1.021140 1.038287 1.041576 1.042846 1.042095 1.023860
3 colCummins(X[rows, cols]) 1.725061 1.705669 1.710340 1.701543 1.693684 2.498039

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.020410 0.0214990 0.0222479 0.0223045 0.0224610 0.036251
2 rowCummins(X, cols, rows) 0.022831 0.0237855 0.0247767 0.0244665 0.0246990 0.052317
3 rowCummins(X[cols, rows]) 0.030901 0.0325430 0.0333857 0.0336010 0.0338715 0.038851
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.118618 1.106354 1.113663 1.096931 1.099639 1.443188
3 rowCummins(X[cols, rows]) 1.514013 1.513698 1.500623 1.506467 1.508014 1.071722

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 15.989 16.298 16.52470 16.3960 16.5695 21.165
2 rowCummins_X_S 20.410 21.499 22.24791 22.3045 22.4610 36.251
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins_X_S 1.276503 1.319119 1.346343 1.360362 1.355563 1.712781

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 integer matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5184790 276.9    8529671 455.6  8529671 455.6
Vcells 9384580  71.6   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5184766 276.9    8529671 455.6  8529671 455.6
Vcells 9389633  71.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.015677 0.0160335 0.0162090 0.0161375 0.0162595 0.017855
2 colCummins(X, rows, cols) 0.017920 0.0184930 0.0187301 0.0186485 0.0189205 0.023008
3 colCummins(X[rows, cols]) 0.027705 0.0281665 0.0287674 0.0282615 0.0285090 0.054637
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colCummins(X, rows, cols) 1.143076 1.153398 1.155539 1.155600 1.163658 1.288603
3 colCummins(X[rows, cols]) 1.767239 1.756728 1.774782 1.751294 1.753375 3.060039

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.020951 0.0219075 0.0227796 0.0221265 0.0233110 0.036048
2 rowCummins(X, cols, rows) 0.024800 0.0259840 0.0272776 0.0269895 0.0280640 0.042307
3 rowCummins(X[cols, rows]) 0.033155 0.0347335 0.0361015 0.0355385 0.0370445 0.070689
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.183714 1.186078 1.197455 1.219782 1.203895 1.173630
3 rowCummins(X[cols, rows]) 1.582502 1.585462 1.584816 1.606151 1.589142 1.960969

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 15.677 16.0335 16.20898 16.1375 16.2595 17.855
2 rowCummins_X_S 20.951 21.9075 22.77964 22.1265 23.3110 36.048
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000
2 rowCummins_X_S 1.336416 1.366358 1.405372 1.371123 1.433685 2.01893

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 integer matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5184995 277.0    8529671 455.6  8529671 455.6
Vcells 9385410  71.7   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5184971 277.0    8529671 455.6  8529671 455.6
Vcells 9390463  71.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.015699 0.0165555 0.0173917 0.0171700 0.0177065 0.032679
2 colCummins(X, rows, cols) 0.018502 0.0190995 0.0199065 0.0196435 0.0203165 0.036713
3 colCummins(X[rows, cols]) 0.028325 0.0298230 0.0311322 0.0310330 0.0315580 0.046307
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colCummins(X, rows, cols) 1.178546 1.153665 1.144600 1.144059 1.147404 1.123443
3 colCummins(X[rows, cols]) 1.804255 1.801395 1.790059 1.807397 1.782283 1.417026

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.018412 0.0193380 0.0197912 0.0199035 0.0202200 0.023383
2 rowCummins(X, cols, rows) 0.022895 0.0238335 0.0249646 0.0245585 0.0251085 0.055176
3 rowCummins(X[cols, rows]) 0.029324 0.0306865 0.0316800 0.0319300 0.0323295 0.045082
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.00000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.243483 1.23247 1.261397 1.233879 1.241766 2.359663
3 rowCummins(X[cols, rows]) 1.592657 1.58685 1.600711 1.604240 1.598887 1.927982

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+10x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 15.699 16.5555 17.39171 17.1700 17.7065 32.679
2 rowCummins_X_S 18.412 19.3380 19.79123 19.9035 20.2200 23.383
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins_X_S 1.172814 1.168071 1.137969 1.159202 1.141954 0.715536

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 integer matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185206 277.0    8529671 455.6  8529671 455.6
Vcells 9408082  71.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185182 277.0    8529671 455.6  8529671 455.6
Vcells 9458135  72.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.098381 0.1102525 0.1204229 0.1144985 0.1323645 0.254618
2 colCummins(X, rows, cols) 0.100008 0.1119840 0.1238642 0.1165325 0.1336210 0.310245
3 colCummins(X[rows, cols]) 0.171976 0.1934190 0.2130575 0.2027355 0.2365120 0.317682
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colCummins(X, rows, cols) 1.016538 1.015705 1.028577 1.017764 1.009493 1.218472
3 colCummins(X[rows, cols]) 1.748061 1.754328 1.769245 1.770639 1.786823 1.247681

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.115840 0.1361965 0.1505212 0.1457645 0.163909 0.206026
2 rowCummins(X, cols, rows) 0.130276 0.1420105 0.1625764 0.1589730 0.172125 0.262708
3 rowCummins(X[cols, rows]) 0.178784 0.2015465 0.2292682 0.2246175 0.248731 0.308502
  expr min lq mean median uq max
1 rowCummins_X_S 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.12462 1.042688 1.080090 1.090615 1.050125 1.275121
3 rowCummins(X[cols, rows]) 1.54337 1.479821 1.523162 1.540962 1.517494 1.497394

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+100x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 98.381 110.2525 120.4229 114.4985 132.3645 254.618
2 rowCummins_X_S 115.840 136.1965 150.5212 145.7645 163.9090 206.026
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowCummins_X_S 1.177463 1.235314 1.249939 1.273069 1.238315 0.8091572

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 integer matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185416 277.0    8529671 455.6  8529671 455.6
Vcells 9408858  71.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185392 277.0    8529671 455.6  8529671 455.6
Vcells 9458911  72.2   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.096354 0.1056810 0.1136942 0.1096075 0.1164960 0.160298
2 colCummins(X, rows, cols) 0.097761 0.1065750 0.1173395 0.1132075 0.1229335 0.169410
3 colCummins(X[rows, cols]) 0.166799 0.1833995 0.2014776 0.1953445 0.2171025 0.306536
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colCummins(X, rows, cols) 1.014602 1.008459 1.032063 1.032844 1.055259 1.056844
3 colCummins(X[rows, cols]) 1.731106 1.735407 1.772101 1.782218 1.863605 1.912288

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.123129 0.1338415 0.1548275 0.1513005 0.1657165 0.211283
2 rowCummins(X, cols, rows) 0.131819 0.1511770 0.1683311 0.1656555 0.1793525 0.282531
3 rowCummins(X[cols, rows]) 0.189457 0.2080270 0.2382065 0.2308440 0.2620870 0.322832
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.070576 1.129523 1.087217 1.094877 1.082285 1.337216
3 rowCummins(X[cols, rows]) 1.538687 1.554279 1.538529 1.525732 1.581538 1.527960

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on integer+1000x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 96.354 105.6810 113.6942 109.6075 116.4960 160.298
2 rowCummins_X_S 123.129 133.8415 154.8275 151.3005 165.7165 211.283
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins_X_S 1.277882 1.266467 1.361788 1.380385 1.422508 1.318064

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = mode)

Results

10x10 double matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185634 277.0    8529671 455.6  8529671 455.6
Vcells 9499964  72.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185601 277.0    8529671 455.6  8529671 455.6
Vcells 9500102  72.5   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.001894 0.0020290 0.0022981 0.0020830 0.0021460 0.018771
2 colCummins(X, rows, cols) 0.002096 0.0024145 0.0026213 0.0024590 0.0025495 0.011467
3 colCummins(X[rows, cols]) 0.002890 0.0030955 0.0033837 0.0032215 0.0033135 0.013518
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colCummins(X, rows, cols) 1.106653 1.189995 1.140662 1.180509 1.188024 0.6108891
3 colCummins(X[rows, cols]) 1.525871 1.525628 1.472420 1.546568 1.544035 0.7201534

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.001817 0.0020125 0.0021330 0.0020940 0.0021655 0.004287
2 rowCummins(X, cols, rows) 0.002170 0.0023525 0.0026411 0.0024175 0.0025500 0.019917
3 rowCummins(X[cols, rows]) 0.002758 0.0030680 0.0032030 0.0031530 0.0033130 0.005159
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.194276 1.168944 1.238203 1.154489 1.177557 4.645906
3 rowCummins(X[cols, rows]) 1.517887 1.524472 1.501653 1.505731 1.529901 1.203406

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 1.894 2.0290 2.29806 2.083 2.1460 18.771
2 rowCummins_X_S 1.817 2.0125 2.13301 2.094 2.1655 4.287
  expr min lq mean median uq max
1 colCummins_X_S 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.0000000
2 rowCummins_X_S 0.9593453 0.9918679 0.9281786 1.005281 1.009087 0.2283842

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 double matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185833 277.0    8529671 455.6  8529671 455.6
Vcells 9505916  72.6   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5185809 277.0    8529671 455.6  8529671 455.6
Vcells 9515969  72.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colCummins(X, rows, cols) 0.030582 0.0321045 0.0329631 0.0326850 0.0331580 0.047132
1 colCummins_X_S 0.030731 0.0318760 0.0330078 0.0330270 0.0331895 0.048927
3 colCummins(X[rows, cols]) 0.046103 0.0490820 0.0495816 0.0494065 0.0496925 0.074218
  expr min lq mean median uq max
2 colCummins(X, rows, cols) 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000
1 colCummins_X_S 1.004872 0.9928826 1.001354 1.010463 1.000950 1.038085
3 colCummins(X[rows, cols]) 1.507521 1.5288199 1.504154 1.511596 1.498658 1.574684

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins(X, cols, rows) 0.018296 0.0187390 0.0201161 0.0189495 0.0196400 0.065204
1 rowCummins_X_S 0.019914 0.0202275 0.0212950 0.0204705 0.0214050 0.031559
3 rowCummins(X[cols, rows]) 0.036230 0.0365095 0.0384711 0.0367665 0.0377755 0.072528
  expr min lq mean median uq max
2 rowCummins(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 rowCummins_X_S 1.088435 1.079433 1.058605 1.080266 1.089868 0.484004
3 rowCummins(X[cols, rows]) 1.980214 1.948316 1.912458 1.940236 1.923396 1.112324

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins_X_S 19.914 20.2275 21.29496 20.4705 21.4050 31.559
1 colCummins_X_S 30.731 31.8760 33.00777 33.0270 33.1895 48.927
  expr min lq mean median uq max
2 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colCummins_X_S 1.543186 1.575874 1.550027 1.613395 1.550549 1.550334

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 double matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186032 277.0    8529671 455.6  8529671 455.6
Vcells 9507323  72.6   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186008 277.0    8529671 455.6  8529671 455.6
Vcells 9517376  72.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.027322 0.0286270 0.0296818 0.0296685 0.0298270 0.043600
2 colCummins(X, rows, cols) 0.028195 0.0293805 0.0304062 0.0307565 0.0310990 0.036943
3 colCummins(X[rows, cols]) 0.042789 0.0445085 0.0458371 0.0466285 0.0468955 0.072171
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colCummins(X, rows, cols) 1.031952 1.026321 1.024405 1.036672 1.042646 0.8473165
3 colCummins(X[rows, cols]) 1.566101 1.554774 1.544283 1.571650 1.572250 1.6552982

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.020104 0.0211380 0.0214802 0.0214425 0.021652 0.026957
2 rowCummins(X, cols, rows) 0.020889 0.0220675 0.0226812 0.0225090 0.022817 0.036190
3 rowCummins(X[cols, rows]) 0.038867 0.0400180 0.0416119 0.0413045 0.041519 0.077111
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.039047 1.043973 1.055914 1.049738 1.053806 1.342508
3 rowCummins(X[cols, rows]) 1.933297 1.893178 1.937225 1.926291 1.917560 2.860519

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x10 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins_X_S 20.104 21.138 21.48018 21.4425 21.652 26.957
1 colCummins_X_S 27.322 28.627 29.68183 29.6685 29.827 43.600
  expr min lq mean median uq max
2 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colCummins_X_S 1.359033 1.354291 1.381824 1.383631 1.377563 1.617391

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 double matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186237 277.0    8529671 455.6  8529671 455.6
Vcells 9507459  72.6   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186213 277.0    8529671 455.6  8529671 455.6
Vcells 9517512  72.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.036557 0.0395040 0.0414634 0.0414630 0.042958 0.062859
2 colCummins(X, rows, cols) 0.039742 0.0434285 0.0470496 0.0466835 0.049544 0.076442
3 colCummins(X[rows, cols]) 0.055167 0.0590315 0.0610964 0.0615955 0.062958 0.078570
  expr min lq mean median uq max
1 colCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colCummins(X, rows, cols) 1.087124 1.099344 1.134726 1.125907 1.153312 1.216087
3 colCummins(X[rows, cols]) 1.509068 1.494317 1.473502 1.485553 1.465571 1.249940

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowCummins_X_S 0.017213 0.0182420 0.0186094 0.018473 0.0186205 0.032489
2 rowCummins(X, cols, rows) 0.018850 0.0199065 0.0208403 0.020239 0.0205645 0.049414
3 rowCummins(X[cols, rows]) 0.033322 0.0347830 0.0355478 0.035540 0.0357255 0.044009
  expr min lq mean median uq max
1 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowCummins(X, cols, rows) 1.095103 1.091246 1.119880 1.095599 1.104401 1.520946
3 rowCummins(X[cols, rows]) 1.935862 1.906754 1.910211 1.923889 1.918611 1.354582

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+10x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins_X_S 17.213 18.242 18.60938 18.473 18.6205 32.489
1 colCummins_X_S 36.557 39.504 41.46342 41.463 42.9580 62.859
  expr min lq mean median uq max
2 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colCummins_X_S 2.123802 2.165552 2.228092 2.244519 2.307027 1.934778

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 double matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186448 277.0    8529671 455.6  8529671 455.6
Vcells 9552913  72.9   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186424 277.0    8529671 455.6  8529671 455.6
Vcells 9652966  73.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colCummins_X_S 0.192922 0.1942375 0.2320334 0.2137830 0.2517620 0.338854
2 colCummins(X, rows, cols) 0.189785 0.1913770 0.2293150 0.2188695 0.2507695 0.409263
3 colCummins(X[rows, cols]) 0.287755 0.2975090 0.3521140 0.3477515 0.3781630 0.480243
  expr min lq mean median uq max
1 colCummins_X_S 1.0000000 1.0000000 1.0000000 1.000000 1.0000000 1.000000
2 colCummins(X, rows, cols) 0.9837395 0.9852732 0.9882845 1.023793 0.9960578 1.207786
3 colCummins(X[rows, cols]) 1.4915614 1.5316764 1.5175145 1.626656 1.5020654 1.417256

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins(X, cols, rows) 0.100402 0.1087440 0.1224488 0.1178120 0.1288175 0.277172
1 rowCummins_X_S 0.109549 0.1238685 0.1382438 0.1340865 0.1492380 0.206046
3 rowCummins(X[cols, rows]) 0.209804 0.2298560 0.2583808 0.2498130 0.2828965 0.377144
  expr min lq mean median uq max
2 rowCummins(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowCummins_X_S 1.091104 1.139083 1.128993 1.138140 1.158523 0.7433868
3 rowCummins(X[cols, rows]) 2.089640 2.113735 2.110114 2.120438 2.196103 1.3606858

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+100x1000 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins_X_S 109.549 123.8685 138.2438 134.0865 149.238 206.046
1 colCummins_X_S 192.922 194.2375 232.0334 213.7830 251.762 338.854
  expr min lq mean median uq max
2 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 colCummins_X_S 1.761057 1.568094 1.678435 1.594366 1.686983 1.644555

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 double matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186658 277.0    8529671 455.6  8529671 455.6
Vcells 9553054  72.9   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colCummins_X_S = colCummins(X_S), `colCummins(X, rows, cols)` = colCummins(X, 
+     rows = rows, cols = cols), `colCummins(X[rows, cols])` = colCummins(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5186634 277.0    8529671 455.6  8529671 455.6
Vcells 9653107  73.7   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowCummins_X_S = rowCummins(X_S), `rowCummins(X, cols, rows)` = rowCummins(X, 
+     rows = cols, cols = rows), `rowCummins(X[cols, rows])` = rowCummins(X[cols, rows]), unit = "ms")

Table: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 colCummins(X, rows, cols) 0.160836 0.1699880 0.1981516 0.1933905 0.2113140 0.332304
1 colCummins_X_S 0.169699 0.1742625 0.2035654 0.1952975 0.2206660 0.299149
3 colCummins(X[rows, cols]) 0.262596 0.2725995 0.3240394 0.3233140 0.3543425 0.536329
  expr min lq mean median uq max
2 colCummins(X, rows, cols) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 colCummins_X_S 1.055106 1.025146 1.027321 1.009861 1.044256 0.9002269
3 colCummins(X[rows, cols]) 1.632694 1.603640 1.635310 1.671820 1.676853 1.6139709

Table: Benchmarking of rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins(X, cols, rows) 0.102477 0.115312 0.1314510 0.126565 0.1409870 0.289618
1 rowCummins_X_S 0.115118 0.122562 0.1427030 0.138125 0.1556825 0.206438
3 rowCummins(X[cols, rows]) 0.216508 0.232242 0.2684032 0.257272 0.2953305 0.456358
  expr min lq mean median uq max
2 rowCummins(X, cols, rows) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 rowCummins_X_S 1.123355 1.062873 1.085598 1.091336 1.104233 0.7127941
3 rowCummins(X[cols, rows]) 2.112747 2.014032 2.041850 2.032726 2.094736 1.5757239

Figure: Benchmarking of colCummins_X_S(), colCummins(X, rows, cols)() and colCummins(X[rows, cols])() on double+1000x100 data as well as rowCummins_X_S(), rowCummins(X, cols, rows)() and rowCummins(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 rowCummins_X_S 115.118 122.5620 142.7030 138.1250 155.6825 206.438
1 colCummins_X_S 169.699 174.2625 203.5654 195.2975 220.6660 299.149
  expr min lq mean median uq max
2 rowCummins_X_S 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000
1 colCummins_X_S 1.474131 1.421831 1.426497 1.413919 1.41741 1.449099

Figure: Benchmarking of colCummins_X_S() and rowCummins_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 22.77 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colRowCummins_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 18:52:42 (+0200 UTC). Powered by RSP.