This report benchmark the performance of colAnys() and rowAnys() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "logical")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5177100 276.5    8529671 455.6  8529671 455.6
Vcells 9627476  73.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168708 276.1    8529671 455.6  8529671 455.6
Vcells 9600142  73.3   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 0.003219 | 0.0033310 | 0.0036600 | 0.0034045 | 0.0035155 | 0.023172 | 
| 2 | colAnys(X, rows, cols) | 0.003705 | 0.0037865 | 0.0039046 | 0.0038480 | 0.0039570 | 0.006410 | 
| 3 | colAnys(X[rows, cols]) | 0.004173 | 0.0044695 | 0.0046776 | 0.0045865 | 0.0047065 | 0.009391 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colAnys(X, rows, cols) | 1.150979 | 1.136746 | 1.066827 | 1.130269 | 1.125587 | 0.2766270 | 
| 3 | colAnys(X[rows, cols]) | 1.296365 | 1.341789 | 1.278008 | 1.347187 | 1.338785 | 0.4052736 | 
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 0.003381 | 0.0034840 | 0.0036096 | 0.0035695 | 0.003663 | 0.005945 | 
| 2 | rowAnys(X, cols, rows) | 0.003786 | 0.0038835 | 0.0042319 | 0.0039635 | 0.004079 | 0.026583 | 
| 3 | rowAnys(X[cols, rows]) | 0.004370 | 0.0046275 | 0.0048266 | 0.0047425 | 0.004898 | 0.007305 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys(X, cols, rows) | 1.119787 | 1.114667 | 1.172418 | 1.110380 | 1.113568 | 4.471489 | 
| 3 | rowAnys(X[cols, rows]) | 1.292517 | 1.328215 | 1.337178 | 1.328618 | 1.337155 | 1.228764 | 
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 3.219 | 3.331 | 3.66004 | 3.4045 | 3.5155 | 23.172 | 
| 2 | rowAnys_X_S | 3.381 | 3.484 | 3.60955 | 3.5695 | 3.6630 | 5.945 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowAnys_X_S | 1.050326 | 1.045932 | 0.9862051 | 1.048465 | 1.041957 | 0.2565596 | 
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167229 276.0    8529671 455.6  8529671 455.6
Vcells 9268270  70.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167205 276.0    8529671 455.6  8529671 455.6
Vcells 9273323  70.8   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 0.004428 | 0.0047970 | 0.0050255 | 0.0049555 | 0.0051425 | 0.011703 | 
| 2 | colAnys(X, rows, cols) | 0.005662 | 0.0059565 | 0.0062993 | 0.0062065 | 0.0064455 | 0.011864 | 
| 3 | colAnys(X[rows, cols]) | 0.020373 | 0.0211020 | 0.0218015 | 0.0212835 | 0.0216425 | 0.052099 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colAnys(X, rows, cols) | 1.278681 | 1.241714 | 1.253455 | 1.252447 | 1.253379 | 1.013757 | 
| 3 | colAnys(X[rows, cols]) | 4.600949 | 4.398999 | 4.338137 | 4.294925 | 4.208556 | 4.451765 | 
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 0.008511 | 0.0090205 | 0.0092478 | 0.0091770 | 0.009338 | 0.014797 | 
| 2 | rowAnys(X, cols, rows) | 0.010165 | 0.0108165 | 0.0114624 | 0.0111000 | 0.011370 | 0.036588 | 
| 3 | rowAnys(X[cols, rows]) | 0.025095 | 0.0255255 | 0.0259974 | 0.0257245 | 0.025930 | 0.040408 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys(X, cols, rows) | 1.194337 | 1.199102 | 1.239463 | 1.209546 | 1.217605 | 2.472663 | 
| 3 | rowAnys(X[cols, rows]) | 2.948537 | 2.829721 | 2.811184 | 2.803149 | 2.776826 | 2.730824 | 
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 4.428 | 4.7970 | 5.02554 | 4.9555 | 5.1425 | 11.703 | 
| 2 | rowAnys_X_S | 8.511 | 9.0205 | 9.24785 | 9.1770 | 9.3380 | 14.797 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys_X_S | 1.922087 | 1.880446 | 1.84017 | 1.851882 | 1.815848 | 1.264377 | 
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167970 276.0    8529671 455.6  8529671 455.6
Vcells 9272324  70.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167946 276.0    8529671 455.6  8529671 455.6
Vcells 9277377  70.8   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 0.003319 | 0.0034875 | 0.0036520 | 0.0035650 | 0.0036920 | 0.008389 | 
| 2 | colAnys(X, rows, cols) | 0.006436 | 0.0068705 | 0.0074484 | 0.0071120 | 0.0074770 | 0.014991 | 
| 3 | colAnys(X[rows, cols]) | 0.020304 | 0.0206600 | 0.0213218 | 0.0207905 | 0.0210155 | 0.053564 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colAnys(X, rows, cols) | 1.939138 | 1.970036 | 2.039515 | 1.994951 | 2.025190 | 1.786983 | 
| 3 | colAnys(X[rows, cols]) | 6.117505 | 5.924014 | 5.838331 | 5.831837 | 5.692172 | 6.385028 | 
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 0.009145 | 0.009619 | 0.0100038 | 0.009948 | 0.0101905 | 0.015216 | 
| 2 | rowAnys(X, cols, rows) | 0.012208 | 0.012966 | 0.0135462 | 0.013311 | 0.0137915 | 0.021230 | 
| 3 | rowAnys(X[cols, rows]) | 0.026203 | 0.027358 | 0.0287920 | 0.027814 | 0.0288275 | 0.092350 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys(X, cols, rows) | 1.334937 | 1.347957 | 1.354115 | 1.338058 | 1.353368 | 1.395242 | 
| 3 | rowAnys(X[cols, rows]) | 2.865282 | 2.844163 | 2.878118 | 2.795939 | 2.828860 | 6.069269 | 
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 3.319 | 3.4875 | 3.65203 | 3.565 | 3.6920 | 8.389 | 
| 2 | rowAnys_X_S | 9.145 | 9.6190 | 10.00376 | 9.948 | 10.1905 | 15.216 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys_X_S | 2.755348 | 2.758136 | 2.739233 | 2.790463 | 2.760157 | 1.813804 | 
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168175 276.1    8529671 455.6  8529671 455.6
Vcells 9273124  70.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168151 276.1    8529671 455.6  8529671 455.6
Vcells 9278177  70.8   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 0.016067 | 0.0168255 | 0.0185005 | 0.0173310 | 0.0180270 | 0.047947 | 
| 2 | colAnys(X, rows, cols) | 0.016226 | 0.0195075 | 0.0230198 | 0.0210520 | 0.0231620 | 0.038127 | 
| 3 | colAnys(X[rows, cols]) | 0.034174 | 0.0352295 | 0.0399646 | 0.0359865 | 0.0373125 | 0.064604 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | colAnys(X, rows, cols) | 1.009896 | 1.159401 | 1.244275 | 1.214702 | 1.284850 | 0.7951905 | 
| 3 | colAnys(X[rows, cols]) | 2.126968 | 2.093816 | 2.160184 | 2.076424 | 2.069812 | 1.3474044 | 
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 0.023456 | 0.0255020 | 0.0269853 | 0.0267640 | 0.028216 | 0.039947 | 
| 2 | rowAnys(X, cols, rows) | 0.022930 | 0.0310540 | 0.0339282 | 0.0330200 | 0.034288 | 0.100766 | 
| 3 | rowAnys(X[cols, rows]) | 0.039365 | 0.0425765 | 0.0448292 | 0.0441295 | 0.045917 | 0.066982 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys(X, cols, rows) | 0.977575 | 1.217708 | 1.257284 | 1.233747 | 1.215197 | 2.522492 | 
| 3 | rowAnys(X[cols, rows]) | 1.678249 | 1.669536 | 1.661248 | 1.648838 | 1.627339 | 1.676772 | 
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 16.067 | 16.8255 | 18.50054 | 17.331 | 18.027 | 47.947 | 
| 2 | rowAnys_X_S | 23.456 | 25.5020 | 26.98528 | 26.764 | 28.216 | 39.947 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowAnys_X_S | 1.459887 | 1.515676 | 1.458621 | 1.544285 | 1.565208 | 0.8331491 | 
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168386 276.1    8529671 455.6  8529671 455.6
Vcells 9295783  71.0   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168362 276.1    8529671 455.6  8529671 455.6
Vcells 9345836  71.4   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 0.014802 | 0.016241 | 0.0177867 | 0.0171440 | 0.0178130 | 0.062863 | 
| 2 | colAnys(X, rows, cols) | 0.017272 | 0.021048 | 0.0224166 | 0.0220205 | 0.0232735 | 0.053511 | 
| 3 | colAnys(X[rows, cols]) | 0.130239 | 0.137066 | 0.1459472 | 0.1433940 | 0.1508165 | 0.191160 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | colAnys(X, rows, cols) | 1.166869 | 1.295979 | 1.260298 | 1.284444 | 1.306546 | 0.851232 | 
| 3 | colAnys(X[rows, cols]) | 8.798743 | 8.439505 | 8.205406 | 8.364092 | 8.466654 | 3.040898 | 
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 0.050192 | 0.0537165 | 0.0584704 | 0.0572910 | 0.0621585 | 0.093070 | 
| 2 | rowAnys(X, cols, rows) | 0.052976 | 0.0560360 | 0.0610338 | 0.0584985 | 0.0645260 | 0.087732 | 
| 3 | rowAnys(X[cols, rows]) | 0.160618 | 0.1710855 | 0.1862103 | 0.1789950 | 0.1988935 | 0.267386 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | rowAnys(X, cols, rows) | 1.055467 | 1.043180 | 1.043842 | 1.021077 | 1.038088 | 0.9426453 | 
| 3 | rowAnys(X[cols, rows]) | 3.200072 | 3.184971 | 3.184696 | 3.124313 | 3.199780 | 2.8729558 | 
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 14.802 | 16.2410 | 17.78671 | 17.144 | 17.8130 | 62.863 | 
| 2 | rowAnys_X_S | 50.192 | 53.7165 | 58.47037 | 57.291 | 62.1585 | 93.070 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys_X_S | 3.390893 | 3.307463 | 3.287307 | 3.341752 | 3.489502 | 1.480521 | 
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168596 276.1    8529671 455.6  8529671 455.6
Vcells 9296443  71.0   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168572 276.1    8529671 455.6  8529671 455.6
Vcells 9346496  71.4   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 0.003695 | 0.004417 | 0.0052580 | 0.0047455 | 0.005138 | 0.034422 | 
| 2 | colAnys(X, rows, cols) | 0.007045 | 0.007841 | 0.0085871 | 0.0082510 | 0.009057 | 0.021070 | 
| 3 | colAnys(X[rows, cols]) | 0.126519 | 0.136779 | 0.1463808 | 0.1469260 | 0.153856 | 0.204313 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 | 
| 2 | colAnys(X, rows, cols) | 1.906631 | 1.775187 | 1.633162 | 1.73870 | 1.762748 | 0.6121085 | 
| 3 | colAnys(X[rows, cols]) | 34.240595 | 30.966493 | 27.839850 | 30.96112 | 29.944726 | 5.9355354 | 
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 0.037217 | 0.0386990 | 0.0421941 | 0.041443 | 0.0436280 | 0.061977 | 
| 2 | rowAnys(X, cols, rows) | 0.043439 | 0.0459090 | 0.0499184 | 0.048884 | 0.0513085 | 0.085342 | 
| 3 | rowAnys(X[cols, rows]) | 0.152316 | 0.1581785 | 0.1705069 | 0.164383 | 0.1809795 | 0.261740 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys(X, cols, rows) | 1.167182 | 1.186310 | 1.183067 | 1.179548 | 1.176045 | 1.376995 | 
| 3 | rowAnys(X[cols, rows]) | 4.092646 | 4.087405 | 4.041015 | 3.966484 | 4.148242 | 4.223180 | 
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

 Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed).  The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 3.695 | 4.417 | 5.25796 | 4.7455 | 5.138 | 34.422 | 
| 2 | rowAnys_X_S | 37.217 | 38.699 | 42.19407 | 41.4430 | 43.628 | 61.977 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnys_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | rowAnys_X_S | 10.07226 | 8.761377 | 8.024799 | 8.733116 | 8.491242 | 1.800506 | 
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    
loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            
Total processing time was 11.11 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowAnys_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 18:50:50 (+0200 UTC). Powered by RSP.