matrixStats.benchmarks


colAnys() and rowAnys() benchmarks on subsetted computation

This report benchmark the performance of colAnys() and rowAnys() on subsetted computation.

Data

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }
> data <- rmatrices(mode = "logical")

Results

10x10 matrix

> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5177100 276.5    8529671 455.6  8529671 455.6
Vcells 9627476  73.5   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168708 276.1    8529671 455.6  8529671 455.6
Vcells 9600142  73.3   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")

Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 0.003219 0.0033310 0.0036600 0.0034045 0.0035155 0.023172
2 colAnys(X, rows, cols) 0.003705 0.0037865 0.0039046 0.0038480 0.0039570 0.006410
3 colAnys(X[rows, cols]) 0.004173 0.0044695 0.0046776 0.0045865 0.0047065 0.009391
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colAnys(X, rows, cols) 1.150979 1.136746 1.066827 1.130269 1.125587 0.2766270
3 colAnys(X[rows, cols]) 1.296365 1.341789 1.278008 1.347187 1.338785 0.4052736

Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowAnys_X_S 0.003381 0.0034840 0.0036096 0.0035695 0.003663 0.005945
2 rowAnys(X, cols, rows) 0.003786 0.0038835 0.0042319 0.0039635 0.004079 0.026583
3 rowAnys(X[cols, rows]) 0.004370 0.0046275 0.0048266 0.0047425 0.004898 0.007305
  expr min lq mean median uq max
1 rowAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys(X, cols, rows) 1.119787 1.114667 1.172418 1.110380 1.113568 4.471489
3 rowAnys(X[cols, rows]) 1.292517 1.328215 1.337178 1.328618 1.337155 1.228764

Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 3.219 3.331 3.66004 3.4045 3.5155 23.172
2 rowAnys_X_S 3.381 3.484 3.60955 3.5695 3.6630 5.945
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000
2 rowAnys_X_S 1.050326 1.045932 0.9862051 1.048465 1.041957 0.2565596

Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167229 276.0    8529671 455.6  8529671 455.6
Vcells 9268270  70.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167205 276.0    8529671 455.6  8529671 455.6
Vcells 9273323  70.8   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")

Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 0.004428 0.0047970 0.0050255 0.0049555 0.0051425 0.011703
2 colAnys(X, rows, cols) 0.005662 0.0059565 0.0062993 0.0062065 0.0064455 0.011864
3 colAnys(X[rows, cols]) 0.020373 0.0211020 0.0218015 0.0212835 0.0216425 0.052099
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colAnys(X, rows, cols) 1.278681 1.241714 1.253455 1.252447 1.253379 1.013757
3 colAnys(X[rows, cols]) 4.600949 4.398999 4.338137 4.294925 4.208556 4.451765

Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowAnys_X_S 0.008511 0.0090205 0.0092478 0.0091770 0.009338 0.014797
2 rowAnys(X, cols, rows) 0.010165 0.0108165 0.0114624 0.0111000 0.011370 0.036588
3 rowAnys(X[cols, rows]) 0.025095 0.0255255 0.0259974 0.0257245 0.025930 0.040408
  expr min lq mean median uq max
1 rowAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys(X, cols, rows) 1.194337 1.199102 1.239463 1.209546 1.217605 2.472663
3 rowAnys(X[cols, rows]) 2.948537 2.829721 2.811184 2.803149 2.776826 2.730824

Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 4.428 4.7970 5.02554 4.9555 5.1425 11.703
2 rowAnys_X_S 8.511 9.0205 9.24785 9.1770 9.3380 14.797
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.00000 1.000000 1.000000 1.000000
2 rowAnys_X_S 1.922087 1.880446 1.84017 1.851882 1.815848 1.264377

Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167970 276.0    8529671 455.6  8529671 455.6
Vcells 9272324  70.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5167946 276.0    8529671 455.6  8529671 455.6
Vcells 9277377  70.8   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")

Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 0.003319 0.0034875 0.0036520 0.0035650 0.0036920 0.008389
2 colAnys(X, rows, cols) 0.006436 0.0068705 0.0074484 0.0071120 0.0074770 0.014991
3 colAnys(X[rows, cols]) 0.020304 0.0206600 0.0213218 0.0207905 0.0210155 0.053564
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colAnys(X, rows, cols) 1.939138 1.970036 2.039515 1.994951 2.025190 1.786983
3 colAnys(X[rows, cols]) 6.117505 5.924014 5.838331 5.831837 5.692172 6.385028

Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowAnys_X_S 0.009145 0.009619 0.0100038 0.009948 0.0101905 0.015216
2 rowAnys(X, cols, rows) 0.012208 0.012966 0.0135462 0.013311 0.0137915 0.021230
3 rowAnys(X[cols, rows]) 0.026203 0.027358 0.0287920 0.027814 0.0288275 0.092350
  expr min lq mean median uq max
1 rowAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys(X, cols, rows) 1.334937 1.347957 1.354115 1.338058 1.353368 1.395242
3 rowAnys(X[cols, rows]) 2.865282 2.844163 2.878118 2.795939 2.828860 6.069269

Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 3.319 3.4875 3.65203 3.565 3.6920 8.389
2 rowAnys_X_S 9.145 9.6190 10.00376 9.948 10.1905 15.216
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys_X_S 2.755348 2.758136 2.739233 2.790463 2.760157 1.813804

Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168175 276.1    8529671 455.6  8529671 455.6
Vcells 9273124  70.8   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168151 276.1    8529671 455.6  8529671 455.6
Vcells 9278177  70.8   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")

Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 0.016067 0.0168255 0.0185005 0.0173310 0.0180270 0.047947
2 colAnys(X, rows, cols) 0.016226 0.0195075 0.0230198 0.0210520 0.0231620 0.038127
3 colAnys(X[rows, cols]) 0.034174 0.0352295 0.0399646 0.0359865 0.0373125 0.064604
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 colAnys(X, rows, cols) 1.009896 1.159401 1.244275 1.214702 1.284850 0.7951905
3 colAnys(X[rows, cols]) 2.126968 2.093816 2.160184 2.076424 2.069812 1.3474044

Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowAnys_X_S 0.023456 0.0255020 0.0269853 0.0267640 0.028216 0.039947
2 rowAnys(X, cols, rows) 0.022930 0.0310540 0.0339282 0.0330200 0.034288 0.100766
3 rowAnys(X[cols, rows]) 0.039365 0.0425765 0.0448292 0.0441295 0.045917 0.066982
  expr min lq mean median uq max
1 rowAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys(X, cols, rows) 0.977575 1.217708 1.257284 1.233747 1.215197 2.522492
3 rowAnys(X[cols, rows]) 1.678249 1.669536 1.661248 1.648838 1.627339 1.676772

Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 16.067 16.8255 18.50054 17.331 18.027 47.947
2 rowAnys_X_S 23.456 25.5020 26.98528 26.764 28.216 39.947
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowAnys_X_S 1.459887 1.515676 1.458621 1.544285 1.565208 0.8331491

Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168386 276.1    8529671 455.6  8529671 455.6
Vcells 9295783  71.0   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168362 276.1    8529671 455.6  8529671 455.6
Vcells 9345836  71.4   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")

Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 0.014802 0.016241 0.0177867 0.0171440 0.0178130 0.062863
2 colAnys(X, rows, cols) 0.017272 0.021048 0.0224166 0.0220205 0.0232735 0.053511
3 colAnys(X[rows, cols]) 0.130239 0.137066 0.1459472 0.1433940 0.1508165 0.191160
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 colAnys(X, rows, cols) 1.166869 1.295979 1.260298 1.284444 1.306546 0.851232
3 colAnys(X[rows, cols]) 8.798743 8.439505 8.205406 8.364092 8.466654 3.040898

Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowAnys_X_S 0.050192 0.0537165 0.0584704 0.0572910 0.0621585 0.093070
2 rowAnys(X, cols, rows) 0.052976 0.0560360 0.0610338 0.0584985 0.0645260 0.087732
3 rowAnys(X[cols, rows]) 0.160618 0.1710855 0.1862103 0.1789950 0.1988935 0.267386
  expr min lq mean median uq max
1 rowAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 rowAnys(X, cols, rows) 1.055467 1.043180 1.043842 1.021077 1.038088 0.9426453
3 rowAnys(X[cols, rows]) 3.200072 3.184971 3.184696 3.124313 3.199780 2.8729558

Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 14.802 16.2410 17.78671 17.144 17.8130 62.863
2 rowAnys_X_S 50.192 53.7165 58.47037 57.291 62.1585 93.070
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys_X_S 3.390893 3.307463 3.287307 3.341752 3.489502 1.480521

Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168596 276.1    8529671 455.6  8529671 455.6
Vcells 9296443  71.0   31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows, 
+     cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5168572 276.1    8529671 455.6  8529671 455.6
Vcells 9346496  71.4   31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols, 
+     cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")

Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 0.003695 0.004417 0.0052580 0.0047455 0.005138 0.034422
2 colAnys(X, rows, cols) 0.007045 0.007841 0.0085871 0.0082510 0.009057 0.021070
3 colAnys(X[rows, cols]) 0.126519 0.136779 0.1463808 0.1469260 0.153856 0.204313
  expr min lq mean median uq max
1 colAnys_X_S 1.000000 1.000000 1.000000 1.00000 1.000000 1.0000000
2 colAnys(X, rows, cols) 1.906631 1.775187 1.633162 1.73870 1.762748 0.6121085
3 colAnys(X[rows, cols]) 34.240595 30.966493 27.839850 30.96112 29.944726 5.9355354

Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 rowAnys_X_S 0.037217 0.0386990 0.0421941 0.041443 0.0436280 0.061977
2 rowAnys(X, cols, rows) 0.043439 0.0459090 0.0499184 0.048884 0.0513085 0.085342
3 rowAnys(X[cols, rows]) 0.152316 0.1581785 0.1705069 0.164383 0.1809795 0.261740
  expr min lq mean median uq max
1 rowAnys_X_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys(X, cols, rows) 1.167182 1.186310 1.183067 1.179548 1.176045 1.376995
3 rowAnys(X[cols, rows]) 4.092646 4.087405 4.041015 3.966484 4.148242 4.223180

Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 colAnys_X_S 3.695 4.417 5.25796 4.7455 5.138 34.422
2 rowAnys_X_S 37.217 38.699 42.19407 41.4430 43.628 61.977
  expr min lq mean median uq max
1 colAnys_X_S 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
2 rowAnys_X_S 10.07226 8.761377 8.024799 8.733116 8.491242 1.800506

Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 11.11 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('colRowAnys_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 18:50:50 (+0200 UTC). Powered by RSP.