This report benchmark the performance of colAnyMissings() and rowAnyMissings() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5168238 276.1 8529671 455.6 8529671 455.6
Vcells 9405490 71.8 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160373 275.6 8529671 455.6 8529671 455.6
Vcells 9379366 71.6 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.004764 | 0.0048960 | 0.0081695 | 0.0049975 | 0.0051465 | 0.300122 |
| 2 | colAnyMissings(X, rows, cols) | 0.005137 | 0.0052965 | 0.0056056 | 0.0053910 | 0.0055315 | 0.020641 |
| 3 | colAnyMissings(X[rows, cols]) | 0.005829 | 0.0061720 | 0.0064292 | 0.0062995 | 0.0064405 | 0.011839 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.078296 | 1.081802 | 0.6861648 | 1.078739 | 1.074808 | 0.0687754 |
| 3 | colAnyMissings(X[rows, cols]) | 1.223552 | 1.260621 | 0.7869713 | 1.260530 | 1.251433 | 0.0394473 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.004935 | 0.0050450 | 0.0051830 | 0.0051470 | 0.0052395 | 0.007354 |
| 2 | rowAnyMissings(X, cols, rows) | 0.005243 | 0.0054750 | 0.0085878 | 0.0055525 | 0.0057245 | 0.299638 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.005927 | 0.0062455 | 0.0064763 | 0.0064115 | 0.0065780 | 0.009756 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.062411 | 1.085233 | 1.656895 | 1.078784 | 1.092566 | 40.744901 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.201013 | 1.237958 | 1.249517 | 1.245677 | 1.255463 | 1.326625 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 4.764 | 4.896 | 8.16951 | 4.9975 | 5.1465 | 300.122 |
| 2 | rowAnyMissings_X_S | 4.935 | 5.045 | 5.18305 | 5.1470 | 5.2395 | 7.354 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings_X_S | 1.035894 | 1.030433 | 0.6344383 | 1.029915 | 1.018071 | 0.0245034 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5159500 275.6 8529671 455.6 8529671 455.6
Vcells 9214159 70.3 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5159476 275.6 8529671 455.6 8529671 455.6
Vcells 9219212 70.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.013782 | 0.0141225 | 0.0144279 | 0.0143485 | 0.0145980 | 0.020174 |
| 2 | colAnyMissings(X, rows, cols) | 0.017009 | 0.0176770 | 0.0180100 | 0.0179010 | 0.0181995 | 0.022137 |
| 3 | colAnyMissings(X[rows, cols]) | 0.025211 | 0.0257895 | 0.0271811 | 0.0260085 | 0.0263985 | 0.062706 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.234146 | 1.251691 | 1.248279 | 1.247587 | 1.246712 | 1.097303 |
| 3 | colAnyMissings(X[rows, cols]) | 1.829270 | 1.826129 | 1.883927 | 1.812628 | 1.808364 | 3.108258 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings(X, cols, rows) | 0.013759 | 0.0147005 | 0.0160306 | 0.0149900 | 0.0155905 | 0.052725 |
| 1 | rowAnyMissings_X_S | 0.013815 | 0.0150885 | 0.0160177 | 0.0153965 | 0.0159835 | 0.035255 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.024877 | 0.0264115 | 0.0274820 | 0.0268960 | 0.0280825 | 0.042618 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings(X, cols, rows) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 1 | rowAnyMissings_X_S | 1.004070 | 1.026394 | 0.999194 | 1.027118 | 1.025208 | 0.6686581 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.808053 | 1.796640 | 1.714341 | 1.794263 | 1.801257 | 0.8083073 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 13.782 | 14.1225 | 14.42787 | 14.3485 | 14.5980 | 20.174 |
| 2 | rowAnyMissings_X_S | 13.815 | 15.0885 | 16.01771 | 15.3965 | 15.9835 | 35.255 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
| 2 | rowAnyMissings_X_S | 1.002394 | 1.068402 | 1.110192 | 1.073039 | 1.09491 | 1.747546 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160242 275.6 8529671 455.6 8529671 455.6
Vcells 9218209 70.4 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160218 275.6 8529671 455.6 8529671 455.6
Vcells 9223262 70.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.012746 | 0.0133290 | 0.0137894 | 0.0135525 | 0.0136995 | 0.027639 |
| 2 | colAnyMissings(X, rows, cols) | 0.017872 | 0.0187040 | 0.0191630 | 0.0189465 | 0.0192710 | 0.026558 |
| 3 | colAnyMissings(X[rows, cols]) | 0.024450 | 0.0255475 | 0.0264699 | 0.0259050 | 0.0261865 | 0.062811 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.402165 | 1.403256 | 1.389694 | 1.398008 | 1.406694 | 0.9608886 |
| 3 | colAnyMissings(X[rows, cols]) | 1.918249 | 1.916685 | 1.919589 | 1.911455 | 1.911493 | 2.2725497 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.015884 | 0.0166435 | 0.0170975 | 0.0168815 | 0.0171135 | 0.029345 |
| 2 | rowAnyMissings(X, cols, rows) | 0.016958 | 0.0177320 | 0.0184489 | 0.0181270 | 0.0186145 | 0.024209 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.029481 | 0.0307810 | 0.0316317 | 0.0312070 | 0.0314415 | 0.070962 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.067615 | 1.065401 | 1.079041 | 1.073779 | 1.087708 | 0.8249787 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.856019 | 1.849431 | 1.850078 | 1.848592 | 1.837234 | 2.4181973 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 12.746 | 13.3290 | 13.78937 | 13.5525 | 13.6995 | 27.639 |
| 2 | rowAnyMissings_X_S | 15.884 | 16.6435 | 17.09748 | 16.8815 | 17.1135 | 29.345 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings_X_S | 1.246195 | 1.248668 | 1.239903 | 1.245637 | 1.249206 | 1.061724 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160447 275.6 8529671 455.6 8529671 455.6
Vcells 9219140 70.4 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160423 275.6 8529671 455.6 8529671 455.6
Vcells 9224193 70.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.015783 | 0.0167735 | 0.0174614 | 0.0169845 | 0.0173080 | 0.047039 |
| 2 | colAnyMissings(X, rows, cols) | 0.021038 | 0.0226015 | 0.0229454 | 0.0228350 | 0.0230775 | 0.034074 |
| 3 | colAnyMissings(X[rows, cols]) | 0.029427 | 0.0308190 | 0.0315096 | 0.0310815 | 0.0316075 | 0.046379 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.332953 | 1.347453 | 1.314064 | 1.344461 | 1.333343 | 0.7243776 |
| 3 | colAnyMissings(X[rows, cols]) | 1.864474 | 1.837363 | 1.804527 | 1.829992 | 1.826179 | 0.9859691 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.016019 | 0.0163735 | 0.0167852 | 0.0165925 | 0.0168880 | 0.022359 |
| 2 | rowAnyMissings(X, cols, rows) | 0.018313 | 0.0188270 | 0.0195425 | 0.0191855 | 0.0194705 | 0.054754 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.028022 | 0.0284220 | 0.0287956 | 0.0286640 | 0.0290390 | 0.034448 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.143205 | 1.149846 | 1.164274 | 1.156275 | 1.152919 | 2.448857 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.749298 | 1.735854 | 1.715537 | 1.727528 | 1.719505 | 1.540677 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings_X_S | 16.019 | 16.3735 | 16.78516 | 16.5925 | 16.888 | 22.359 |
| 1 | colAnyMissings_X_S | 15.783 | 16.7735 | 17.46142 | 16.9845 | 17.308 | 47.039 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings_X_S | 1.0000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
| 1 | colAnyMissings_X_S | 0.9852675 | 1.02443 | 1.040289 | 1.023625 | 1.02487 | 2.103806 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160658 275.7 8529671 455.6 8529671 455.6
Vcells 9241833 70.6 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160634 275.7 8529671 455.6 8529671 455.6
Vcells 9291886 70.9 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.068732 | 0.0718555 | 0.0796662 | 0.0765295 | 0.085540 | 0.123166 |
| 2 | colAnyMissings(X, rows, cols) | 0.087344 | 0.0909465 | 0.1007715 | 0.0969410 | 0.109387 | 0.171444 |
| 3 | colAnyMissings(X[rows, cols]) | 0.149315 | 0.1598135 | 0.1732749 | 0.1712850 | 0.186491 | 0.212085 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.270791 | 1.265686 | 1.264922 | 1.266714 | 1.278782 | 1.391975 |
| 3 | colAnyMissings(X[rows, cols]) | 2.172423 | 2.224096 | 2.175013 | 2.238157 | 2.180161 | 1.721944 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings(X, cols, rows) | 0.069810 | 0.0726365 | 0.0796728 | 0.0748425 | 0.0847790 | 0.142066 |
| 1 | rowAnyMissings_X_S | 0.069450 | 0.0741070 | 0.0810793 | 0.0801935 | 0.0865870 | 0.124561 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.146539 | 0.1560045 | 0.1687410 | 0.1629055 | 0.1811055 | 0.201860 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings(X, cols, rows) | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 1 | rowAnyMissings_X_S | 0.9948431 | 1.020245 | 1.017654 | 1.071497 | 1.021326 | 0.8767826 |
| 3 | rowAnyMissings(X[cols, rows]) | 2.0991119 | 2.147743 | 2.117924 | 2.176644 | 2.136207 | 1.4208889 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 68.732 | 71.8555 | 79.66615 | 76.5295 | 85.540 | 123.166 |
| 2 | rowAnyMissings_X_S | 69.450 | 74.1070 | 81.07934 | 80.1935 | 86.587 | 124.561 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
| 2 | rowAnyMissings_X_S | 1.010446 | 1.031334 | 1.017739 | 1.047877 | 1.01224 | 1.011326 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160868 275.7 8529671 455.6 8529671 455.6
Vcells 9242640 70.6 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5160844 275.7 8529671 455.6 8529671 455.6
Vcells 9292693 70.9 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.067708 | 0.0701475 | 0.0768881 | 0.0726405 | 0.0807180 | 0.121301 |
| 2 | colAnyMissings(X, rows, cols) | 0.086963 | 0.0897345 | 0.1004927 | 0.0991790 | 0.1074625 | 0.149402 |
| 3 | colAnyMissings(X[rows, cols]) | 0.145024 | 0.1504565 | 0.1688668 | 0.1608425 | 0.1866255 | 0.258294 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.284383 | 1.279226 | 1.307000 | 1.365340 | 1.331333 | 1.231663 |
| 3 | colAnyMissings(X[rows, cols]) | 2.141904 | 2.144859 | 2.196267 | 2.214226 | 2.312068 | 2.129364 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings(X, cols, rows) | 0.064863 | 0.0716550 | 0.0772394 | 0.0743695 | 0.0788165 | 0.176123 |
| 1 | rowAnyMissings_X_S | 0.069201 | 0.0755755 | 0.0802294 | 0.0787945 | 0.0835245 | 0.108392 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.143929 | 0.1572250 | 0.1682894 | 0.1633200 | 0.1739550 | 0.227019 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowAnyMissings(X, cols, rows) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 1 | rowAnyMissings_X_S | 1.066879 | 1.054714 | 1.038710 | 1.059500 | 1.059734 | 0.6154335 |
| 3 | rowAnyMissings(X[cols, rows]) | 2.218969 | 2.194194 | 2.178801 | 2.196062 | 2.207089 | 1.2889799 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 67.708 | 70.1475 | 76.88810 | 72.6405 | 80.7180 | 121.301 |
| 2 | rowAnyMissings_X_S | 69.201 | 75.5755 | 80.22942 | 78.7945 | 83.5245 | 108.392 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings_X_S | 1.022051 | 1.07738 | 1.043457 | 1.084719 | 1.034769 | 0.8935788 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161086 275.7 8529671 455.6 8529671 455.6
Vcells 9333779 71.3 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161053 275.7 8529671 455.6 8529671 455.6
Vcells 9333917 71.3 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.004763 | 0.0049160 | 0.0053280 | 0.0050130 | 0.0050915 | 0.031773 |
| 2 | colAnyMissings(X, rows, cols) | 0.005136 | 0.0053475 | 0.0054884 | 0.0054315 | 0.0055435 | 0.008306 |
| 3 | colAnyMissings(X[rows, cols]) | 0.005850 | 0.0062080 | 0.0063675 | 0.0062870 | 0.0064075 | 0.011304 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.078312 | 1.087775 | 1.030103 | 1.083483 | 1.088775 | 0.2614169 |
| 3 | colAnyMissings(X[rows, cols]) | 1.228217 | 1.262815 | 1.195118 | 1.254139 | 1.258470 | 0.3557738 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.004928 | 0.005112 | 0.0052579 | 0.0052035 | 0.0053700 | 0.007703 |
| 2 | rowAnyMissings(X, cols, rows) | 0.005289 | 0.005462 | 0.0059575 | 0.0055770 | 0.0056985 | 0.034002 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.006113 | 0.006315 | 0.0065227 | 0.0064595 | 0.0065995 | 0.009716 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.073255 | 1.068466 | 1.133066 | 1.071779 | 1.061173 | 4.414124 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.240463 | 1.235329 | 1.240547 | 1.241376 | 1.228957 | 1.261327 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 4.763 | 4.916 | 5.32797 | 5.0130 | 5.0915 | 31.773 |
| 2 | rowAnyMissings_X_S | 4.928 | 5.112 | 5.25790 | 5.2035 | 5.3700 | 7.703 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.00000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings_X_S | 1.034642 | 1.03987 | 0.9868486 | 1.038001 | 1.054699 | 0.2424385 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161285 275.7 8529671 455.6 8529671 455.6
Vcells 9339765 71.3 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161261 275.7 8529671 455.6 8529671 455.6
Vcells 9349818 71.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.014080 | 0.0147540 | 0.0153998 | 0.0151635 | 0.0155990 | 0.030410 |
| 2 | colAnyMissings(X, rows, cols) | 0.014756 | 0.0155700 | 0.0162705 | 0.0161000 | 0.0166425 | 0.022333 |
| 3 | colAnyMissings(X[rows, cols]) | 0.029500 | 0.0308305 | 0.0319412 | 0.0313230 | 0.0323670 | 0.069307 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.048011 | 1.055307 | 1.056539 | 1.061760 | 1.066895 | 0.7343966 |
| 3 | colAnyMissings(X[rows, cols]) | 2.095171 | 2.089637 | 2.074134 | 2.065684 | 2.074941 | 2.2790858 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.017863 | 0.0185890 | 0.0194330 | 0.0193800 | 0.0200885 | 0.025795 |
| 2 | rowAnyMissings(X, cols, rows) | 0.018339 | 0.0191705 | 0.0204793 | 0.0199875 | 0.0206215 | 0.056908 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.033330 | 0.0341825 | 0.0358083 | 0.0354035 | 0.0369535 | 0.049152 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.026647 | 1.031282 | 1.053840 | 1.031347 | 1.026533 | 2.206164 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.865868 | 1.838856 | 1.842654 | 1.826806 | 1.839535 | 1.905486 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 14.080 | 14.754 | 15.39977 | 15.1635 | 15.5990 | 30.410 |
| 2 | rowAnyMissings_X_S | 17.863 | 18.589 | 19.43298 | 19.3800 | 20.0885 | 25.795 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings_X_S | 1.268679 | 1.259929 | 1.261901 | 1.278069 | 1.287807 | 0.8482407 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161484 275.7 8529671 455.6 8529671 455.6
Vcells 9341215 71.3 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161460 275.7 8529671 455.6 8529671 455.6
Vcells 9351268 71.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.012883 | 0.0134635 | 0.0138016 | 0.0136990 | 0.0138585 | 0.025085 |
| 2 | colAnyMissings(X, rows, cols) | 0.016309 | 0.0170090 | 0.0175423 | 0.0172810 | 0.0176415 | 0.031930 |
| 3 | colAnyMissings(X[rows, cols]) | 0.029507 | 0.0306820 | 0.0313238 | 0.0310105 | 0.0312045 | 0.068240 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.265932 | 1.263342 | 1.271037 | 1.261479 | 1.272973 | 1.272872 |
| 3 | colAnyMissings(X[rows, cols]) | 2.290383 | 2.278902 | 2.269578 | 2.263705 | 2.251651 | 2.720351 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.017414 | 0.0189950 | 0.0195016 | 0.0193190 | 0.0196165 | 0.034245 |
| 2 | rowAnyMissings(X, cols, rows) | 0.019997 | 0.0210155 | 0.0215119 | 0.0217030 | 0.0219970 | 0.024958 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.036654 | 0.0385975 | 0.0399305 | 0.0398395 | 0.0400455 | 0.081435 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.148329 | 1.106370 | 1.103087 | 1.123402 | 1.121352 | 0.7288071 |
| 3 | rowAnyMissings(X[cols, rows]) | 2.104858 | 2.031982 | 2.047554 | 2.062193 | 2.041419 | 2.3780114 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 12.883 | 13.4635 | 13.80159 | 13.699 | 13.8585 | 25.085 |
| 2 | rowAnyMissings_X_S | 17.414 | 18.9950 | 19.50156 | 19.319 | 19.6165 | 34.245 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings_X_S | 1.351704 | 1.410852 | 1.412994 | 1.410249 | 1.415485 | 1.365158 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161689 275.7 8529671 455.6 8529671 455.6
Vcells 9341351 71.3 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161665 275.7 8529671 455.6 8529671 455.6
Vcells 9351404 71.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.016341 | 0.0178340 | 0.0186672 | 0.0184625 | 0.0188980 | 0.046513 |
| 2 | colAnyMissings(X, rows, cols) | 0.019917 | 0.0210530 | 0.0221198 | 0.0220160 | 0.0224810 | 0.039709 |
| 3 | colAnyMissings(X[rows, cols]) | 0.035556 | 0.0374405 | 0.0385000 | 0.0387920 | 0.0391845 | 0.053957 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.218836 | 1.180498 | 1.184957 | 1.192471 | 1.189597 | 0.8537183 |
| 3 | colAnyMissings(X[rows, cols]) | 2.175877 | 2.099389 | 2.062445 | 2.101124 | 2.073473 | 1.1600413 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.019145 | 0.0198565 | 0.0206390 | 0.020370 | 0.021120 | 0.028078 |
| 2 | rowAnyMissings(X, cols, rows) | 0.021345 | 0.0226535 | 0.0239933 | 0.023574 | 0.024279 | 0.061634 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.034874 | 0.0363200 | 0.0374831 | 0.037167 | 0.038499 | 0.050534 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.114912 | 1.140861 | 1.162522 | 1.157290 | 1.149574 | 2.195099 |
| 3 | rowAnyMissings(X[cols, rows]) | 1.821572 | 1.829124 | 1.816129 | 1.824595 | 1.822869 | 1.799772 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 16.341 | 17.8340 | 18.66715 | 18.4625 | 18.898 | 46.513 |
| 2 | rowAnyMissings_X_S | 19.145 | 19.8565 | 20.63900 | 20.3700 | 21.120 | 28.078 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowAnyMissings_X_S | 1.171593 | 1.113407 | 1.105632 | 1.103317 | 1.117579 | 0.6036592 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161900 275.7 8529671 455.6 8529671 455.6
Vcells 9386864 71.7 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5161876 275.7 8529671 455.6 8529671 455.6
Vcells 9486917 72.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.073336 | 0.078950 | 0.0860482 | 0.0819950 | 0.0909950 | 0.136407 |
| 2 | colAnyMissings(X, rows, cols) | 0.081648 | 0.087093 | 0.0957248 | 0.0904085 | 0.1028235 | 0.204545 |
| 3 | colAnyMissings(X[rows, cols]) | 0.187117 | 0.199815 | 0.2178751 | 0.2079400 | 0.2298140 | 0.263287 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.113341 | 1.103141 | 1.112455 | 1.102610 | 1.129991 | 1.499520 |
| 3 | colAnyMissings(X[rows, cols]) | 2.551503 | 2.530906 | 2.532011 | 2.536008 | 2.525567 | 1.930157 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.089237 | 0.100313 | 0.1108312 | 0.1079435 | 0.1195555 | 0.166717 |
| 2 | rowAnyMissings(X, cols, rows) | 0.094051 | 0.102488 | 0.1126039 | 0.1088550 | 0.1209705 | 0.226227 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.190255 | 0.210242 | 0.2330036 | 0.2287820 | 0.2520205 | 0.318517 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 1.053946 | 1.021682 | 1.015994 | 1.008444 | 1.011836 | 1.356952 |
| 3 | rowAnyMissings(X[cols, rows]) | 2.132019 | 2.095860 | 2.102328 | 2.119461 | 2.107979 | 1.910525 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 73.336 | 78.950 | 86.04824 | 81.9950 | 90.9950 | 136.407 |
| 2 | rowAnyMissings_X_S | 89.237 | 100.313 | 110.83122 | 107.9435 | 119.5555 | 166.717 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings_X_S | 1.216824 | 1.270589 | 1.288013 | 1.316464 | 1.313869 | 1.222203 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5162110 275.7 8529671 455.6 8529671 455.6
Vcells 9387005 71.7 31876688 243.2 60562128 462.1
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5162086 275.7 8529671 455.6 8529671 455.6
Vcells 9487058 72.4 31876688 243.2 60562128 462.1
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 0.068125 | 0.070902 | 0.0776889 | 0.073456 | 0.0829200 | 0.127949 |
| 2 | colAnyMissings(X, rows, cols) | 0.077436 | 0.081009 | 0.0905127 | 0.087444 | 0.0965605 | 0.139821 |
| 3 | colAnyMissings(X[rows, cols]) | 0.181127 | 0.190029 | 0.2118699 | 0.203866 | 0.2336380 | 0.340141 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | colAnyMissings(X, rows, cols) | 1.136675 | 1.142549 | 1.165067 | 1.190427 | 1.164502 | 1.092787 |
| 3 | colAnyMissings(X[rows, cols]) | 2.658745 | 2.680164 | 2.727158 | 2.775349 | 2.817632 | 2.658411 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 0.093433 | 0.1024075 | 0.1131587 | 0.1093515 | 0.1197825 | 0.209474 |
| 2 | rowAnyMissings(X, cols, rows) | 0.093000 | 0.1052835 | 0.1163487 | 0.1120100 | 0.1245360 | 0.277027 |
| 3 | rowAnyMissings(X[cols, rows]) | 0.195649 | 0.2170510 | 0.2428237 | 0.2353920 | 0.2577630 | 0.407847 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowAnyMissings_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings(X, cols, rows) | 0.9953657 | 1.028084 | 1.028190 | 1.024312 | 1.039684 | 1.322489 |
| 3 | rowAnyMissings(X[cols, rows]) | 2.0940032 | 2.119483 | 2.145868 | 2.152618 | 2.151925 | 1.947005 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 68.125 | 70.9020 | 77.68889 | 73.4560 | 82.9200 | 127.949 |
| 2 | rowAnyMissings_X_S | 93.433 | 102.4075 | 113.15871 | 109.3515 | 119.7825 | 209.474 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowAnyMissings_X_S | 1.371494 | 1.444353 | 1.456562 | 1.488667 | 1.444555 | 1.637168 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.1 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rappdirs_0.3.3 startup_0.15.0 labeling_0.4.2
[67] bitops_1.0-7 base64enc_0.1-3 boot_1.3-28
[70] gtable_0.3.0 DBI_1.1.1 markdown_1.1
[73] R6_2.5.1 lpSolveAPI_5.5.2.0-17.7 rle_0.9.2
[76] dplyr_1.0.7 fastmap_1.1.0 bit_4.0.4
[79] utf8_1.2.2 parallel_4.1.1 Rcpp_1.0.7
[82] vctrs_0.3.8 png_0.1-7 DEoptimR_1.0-9
[85] tidyselect_1.1.1 xfun_0.25 coda_0.19-4
Total processing time was 22.17 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowAnyMissings_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 18:50:12 (+0200 UTC). Powered by RSP.