matrixStats.benchmarks


binMeans() benchmarks

This report benchmark the performance of binMeans() against alternative methods.

Alternative methods

which is defined as

> binMeans_R <- function(y, x, bx, na.rm = FALSE, count = TRUE, right = FALSE) {
+     B <- length(bx) - 1L
+     res <- double(B)
+     counts <- integer(B)
+     for (kk in seq_len(B)) {
+         if (right) {
+             idxs <- which(bx[kk] < x & x <= bx[kk + 1L])
+         }         else {
+             idxs <- which(bx[kk] <= x & x < bx[kk + 1L])
+         }
+         yKK <- y[idxs]
+         muKK <- mean(yKK)
+         res[kk] <- muKK
+         counts[kk] <- length(idxs)
+     }
+     if (count) 
+         attr(res, "count") <- counts
+     res
+ }

Results

Non-sorted simulated data

> nx <- 10000
> set.seed(48879)
> x <- runif(nx, min = 0, max = 1)
> y <- runif(nx, min = 0, max = 1)
> nb <- 1000
> bx <- seq(from = 0, to = 1, length.out = nb + 1L)
> bx <- c(-1, bx, 2)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5159070 275.6    8529671 455.6  8529671 455.6
Vcells 9312520  71.1   31876688 243.2 60562128 462.1
> stats <- microbenchmark(binMeans = binMeans(x = x, y = y, bx = bx, count = TRUE), binMeans_R = binMeans_R(x = x, 
+     y = y, bx = bx, count = TRUE), unit = "ms")

Table: Benchmarking of binMeans() and binMeans_R() on unsorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binMeans 0.763954 0.7876935 0.872291 0.8241335 0.8617575 5.340721
2 binMeans_R 79.363274 84.2628370 88.225814 85.0680895 85.5160015 409.873427
  expr min lq mean median uq max
1 binMeans 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000
2 binMeans_R 103.8849 106.9741 101.1426 103.2212 99.23442 76.74496

Figure: Benchmarking of binMeans() and binMeans_R() on unsorted data. Outliers are displayed as crosses. Times are in milliseconds.

Sorted simulated data

> x <- sort(x)
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5149367 275.1    8529671 455.6  8529671 455.6
Vcells 9049349  69.1   31876688 243.2 60562128 462.1
> stats <- microbenchmark(binMeans = binMeans(x = x, y = y, bx = bx, count = TRUE), binMeans_R = binMeans_R(x = x, 
+     y = y, bx = bx, count = TRUE), unit = "ms")

Table: Benchmarking of binMeans() and binMeans_R() on sorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binMeans 0.293649 0.3122575 0.3942717 0.33585 0.3899235 4.669011
2 binMeans_R 62.777718 69.0993285 72.1667254 69.37429 69.6742795 396.116641
  expr min lq mean median uq max
1 binMeans 1.0000 1.0000 1.0000 1.0000 1.000 1.00000
2 binMeans_R 213.7849 221.2896 183.0381 206.5633 178.687 84.83952

Figure: Benchmarking of binMeans() and binMeans_R() on sorted data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 17.84 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('binMeans')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 18:49:24 (+0200 UTC). Powered by RSP.