matrixStats.benchmarks


binCounts() benchmarks on subsetted computation

This report benchmark the performance of binCounts() on subsetted computation.

Data type “integer”

Non-sorted simulated data

> set.seed(48879)
> nx <- 1e+05
> xmax <- 0.01 * nx
> x <- runif(nx, min = 0, max = xmax)
> storage.mode(x) <- mode
> str(x)
 int [1:100000] 722 285 591 3 349 509 216 91 150 383 ...
> nb <- 10000
> bx <- seq(from = 0, to = xmax, length.out = nb + 1L)
> bx <- c(-1, bx, xmax + 1)
> idxs <- sample.int(length(x), size = length(x) * 0.7)

Results

> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5154501 275.3    8529671 455.6  8529671 455.6
Vcells 20249600 154.5   49807323 380.0 60562128 462.1
> stats <- microbenchmark(binCounts_x_S = binCounts(x_S, bx = bx), `binCounts(x, idxs)` = binCounts(x, 
+     idxs = idxs, bx = bx), `binCounts(x[idxs])` = binCounts(x[idxs], bx = bx), unit = "ms")

Table: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on integer+unsorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binCounts_x_S 3.743131 3.848801 4.127887 3.922297 4.027184 8.920197
2 binCounts(x, idxs) 3.893024 4.004293 4.168872 4.096316 4.166940 5.471601
3 binCounts(x[idxs]) 3.857521 4.031572 4.236317 4.106948 4.205989 8.409583
  expr min lq mean median uq max
1 binCounts_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 binCounts(x, idxs) 1.040045 1.040400 1.009929 1.044367 1.034703 0.6133946
3 binCounts(x[idxs]) 1.030560 1.047488 1.026268 1.047077 1.044399 0.9427575

Figure: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on integer+unsorted data. Outliers are displayed as crosses. Times are in milliseconds.

Sorted simulated data

> x <- sort(x)
> idxs <- sort(idxs)
> x_S <- x[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5144884 274.8    8529671 455.6  8529671 455.6
Vcells 9089908  69.4   39845859 304.0 60562128 462.1
> stats <- microbenchmark(binCounts_x_S = binCounts(x_S, bx = bx), `binCounts(x, idxs)` = binCounts(x, 
+     idxs = idxs, bx = bx), `binCounts(x[idxs])` = binCounts(x[idxs], bx = bx), unit = "ms")

Table: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on integer+sorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binCounts_x_S 0.385435 0.4092300 0.4817315 0.4294950 0.4709225 3.929690
3 binCounts(x[idxs]) 0.518729 0.5491750 0.6191970 0.5692775 0.6047635 4.079936
2 binCounts(x, idxs) 0.516765 0.5495165 0.6299195 0.5742815 0.6159210 4.122084
  expr min lq mean median uq max
1 binCounts_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 binCounts(x[idxs]) 1.345827 1.341972 1.285357 1.325458 1.284210 1.038234
2 binCounts(x, idxs) 1.340732 1.342806 1.307615 1.337109 1.307903 1.048959

Figure: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on integer+sorted data. Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Non-sorted simulated data

> set.seed(48879)
> nx <- 1e+05
> xmax <- 0.01 * nx
> x <- runif(nx, min = 0, max = xmax)
> storage.mode(x) <- mode
> str(x)
 num [1:100000] 722.11 285.54 591.33 3.42 349.14 ...
> nb <- 10000
> bx <- seq(from = 0, to = xmax, length.out = nb + 1L)
> bx <- c(-1, bx, xmax + 1)
> idxs <- sample.int(length(x), size = length(x) * 0.7)

Results

> x_S <- x[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5144954 274.8    8529671 455.6  8529671 455.6
Vcells 9175467  70.1   31876688 243.2 60562128 462.1
> stats <- microbenchmark(binCounts_x_S = binCounts(x_S, bx = bx), `binCounts(x, idxs)` = binCounts(x, 
+     idxs = idxs, bx = bx), `binCounts(x[idxs])` = binCounts(x[idxs], bx = bx), unit = "ms")

Table: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on double+unsorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binCounts_x_S 5.105216 5.257010 5.446426 5.342236 5.421011 9.558161
3 binCounts(x[idxs]) 5.338782 5.499212 5.578754 5.533915 5.628005 6.476944
2 binCounts(x, idxs) 5.312807 5.492083 5.723801 5.556865 5.667785 9.995764
  expr min lq mean median uq max
1 binCounts_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 binCounts(x[idxs]) 1.045751 1.046072 1.024296 1.035880 1.038184 0.677635
2 binCounts(x, idxs) 1.040663 1.044716 1.050928 1.040176 1.045522 1.045783

Figure: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on double+unsorted data. Outliers are displayed as crosses. Times are in milliseconds.

Sorted simulated data

> x <- sort(x)
> idxs <- sort(idxs)
> x_S <- x[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5145028 274.8    8529671 455.6  8529671 455.6
Vcells 9175516  70.1   31876688 243.2 60562128 462.1
> stats <- microbenchmark(binCounts_x_S = binCounts(x_S, bx = bx), `binCounts(x, idxs)` = binCounts(x, 
+     idxs = idxs, bx = bx), `binCounts(x[idxs])` = binCounts(x[idxs], bx = bx), unit = "ms")

Table: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on double+sorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binCounts_x_S 1.093777 1.187210 1.283248 1.216720 1.255538 4.833301
3 binCounts(x[idxs]) 1.256096 1.349684 1.423724 1.376073 1.399282 4.866945
2 binCounts(x, idxs) 1.266017 1.345908 1.434421 1.387024 1.414468 4.888036
  expr min lq mean median uq max
1 binCounts_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 binCounts(x[idxs]) 1.148402 1.136854 1.109469 1.130969 1.114488 1.006961
2 binCounts(x, idxs) 1.157473 1.133673 1.117804 1.139970 1.126583 1.011325

Figure: Benchmarking of binCounts_x_S(), binCounts(x, idxs)() and binCounts(x[idxs])() on double+sorted data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 6.89 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('binCounts_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 18:48:51 (+0200 UTC). Powered by RSP.