matrixStats.benchmarks


anyMissing() benchmarks

This report benchmark the performance of anyMissing() against alternative methods.

Alternative methods

as below

> any_is.na <- function(x) {
+     any(is.na(x))
+ }

Data type “integer”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5152034 275.2    8529671 455.6  8529671 455.6
Vcells 36173384 276.0   62259153 475.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.000973 0.0009920 0.0010968 0.0010000 0.0010070 0.010426
1 anyMissing 0.002027 0.0021225 0.0022675 0.0021840 0.0022205 0.010378
3 any_is.na 0.003302 0.0034295 0.0036184 0.0034855 0.0035370 0.015873
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.0000 1.000000 1.0000000
1 anyMissing 2.083248 2.139617 2.067397 2.1840 2.205065 0.9953961
3 any_is.na 3.393628 3.457157 3.299073 3.4855 3.512413 1.5224439

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144160 274.8    8529671 455.6  8529671 455.6
Vcells 14517313 110.8   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.008576 0.0086040 0.0086537 0.0086215 0.0086595 0.010408
1 anyMissing 0.013567 0.0136870 0.0140085 0.0138075 0.0139680 0.030265
3 any_is.na 0.023747 0.0239925 0.0247613 0.0241095 0.0242160 0.056753
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.581973 1.590772 1.618788 1.601519 1.613026 2.907859
3 any_is.na 2.769007 2.788529 2.861362 2.796439 2.796466 5.452825

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144232 274.8    8529671 455.6  8529671 455.6
Vcells 14517873 110.8   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.061100 0.0650640 0.0726624 0.0695435 0.0806350 0.097477
1 anyMissing 0.092348 0.0985975 0.1055131 0.1019005 0.1105750 0.135588
3 any_is.na 0.168023 0.1793765 0.1980350 0.1907250 0.2174475 0.237122
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.511424 1.515392 1.452101 1.465277 1.371303 1.390974
3 any_is.na 2.749967 2.756924 2.725414 2.742528 2.696689 2.432594

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144304 274.8    8529671 455.6  8529671 455.6
Vcells 14517922 110.8   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.514294 0.5384355 0.5798987 0.5611415 0.5893185 0.968321
1 anyMissing 0.772282 0.8070910 0.8609053 0.8199880 0.8559225 1.380374
3 any_is.na 1.474060 2.4530995 2.5763802 2.6654305 2.7283590 12.827137
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.501635 1.498956 1.484579 1.461286 1.452394 1.425534
3 any_is.na 2.866182 4.555976 4.442811 4.750015 4.629685 13.246782

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000000 vector

> x <- data[["n = 10000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144376 274.8    8529671 455.6  8529671 455.6
Vcells 14517970 110.8   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 5.861691 6.135744 6.230218 6.160833 6.20096 9.261701
1 anyMissing 8.480076 8.961927 9.023018 8.991722 9.06896 12.215810
3 any_is.na 26.105978 27.193877 29.577854 27.629778 27.85750 43.197121
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.446694 1.460610 1.448267 1.459498 1.462509 1.318960
3 any_is.na 4.453660 4.432042 4.747483 4.484747 4.492449 4.664059

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144458 274.8    8529671 455.6  8529671 455.6
Vcells 20074006 153.2   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.000791 0.0008255 0.0008796 0.0008440 0.0008605 0.004191
1 anyMissing 0.002090 0.0021595 0.0023204 0.0022165 0.0022610 0.011506
3 any_is.na 0.003298 0.0034420 0.0036254 0.0035160 0.0035865 0.013455
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 2.642225 2.615990 2.638021 2.626185 2.627542 2.745407
3 any_is.na 4.169406 4.169594 4.121622 4.165877 4.167926 3.210451

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144521 274.8    8529671 455.6  8529671 455.6
Vcells 20074038 153.2   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.006894 0.006966 0.0074654 0.0070265 0.0071065 0.039464
1 anyMissing 0.013586 0.013850 0.0145278 0.0139975 0.0141965 0.030347
3 any_is.na 0.023734 0.024044 0.0243733 0.0241790 0.0243850 0.030438
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 anyMissing 1.970699 1.988228 1.946028 1.992101 1.997678 0.7689793
3 any_is.na 3.442704 3.451622 3.264858 3.441116 3.431366 0.7712852

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144593 274.8    8529671 455.6  8529671 455.6
Vcells 20074387 153.2   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.052764 0.0546730 0.0616280 0.0603620 0.0675770 0.100950
1 anyMissing 0.092763 0.0986535 0.1066690 0.1019185 0.1154645 0.137157
3 any_is.na 0.172514 0.1838365 0.1995859 0.1931575 0.2137420 0.276206
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.758074 1.804428 1.730853 1.688455 1.708636 1.358663
3 any_is.na 3.269540 3.362473 3.238558 3.199985 3.162940 2.736067

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144665 274.8    8529671 455.6  8529671 455.6
Vcells 20074796 153.2   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 0.488276 0.5865935 0.6339998 0.6204725 0.668281 0.974961
1 anyMissing 0.837390 0.8992895 0.9717933 0.9294225 0.991114 1.463979
3 any_is.na 1.683921 1.8573475 2.4499314 2.6679400 2.756080 10.234572
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.714993 1.533071 1.532797 1.497927 1.483080 1.501577
3 any_is.na 3.448707 3.166328 3.864246 4.299852 4.124133 10.497417

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000000 vector

> x <- data[["n = 10000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5144737 274.8    8529671 455.6  8529671 455.6
Vcells 20074844 153.2   49807323 380.0 60562128 462.1
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")

Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 anyNA 6.412402 6.679305 6.940353 6.925208 7.132852 9.111181
1 anyMissing 9.418517 9.970565 10.386660 10.412384 10.694017 13.219841
3 any_is.na 21.378771 28.010554 28.979604 28.919453 29.831470 32.894569
  expr min lq mean median uq max
2 anyNA 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 anyMissing 1.468797 1.492755 1.496561 1.503548 1.499262 1.450947
3 any_is.na 3.333972 4.193633 4.175523 4.175969 4.182264 3.610352

Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.1     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rappdirs_0.3.3          startup_0.15.0          labeling_0.4.2         
[67] bitops_1.0-7            base64enc_0.1-3         boot_1.3-28            
[70] gtable_0.3.0            DBI_1.1.1               markdown_1.1           
[73] R6_2.5.1                lpSolveAPI_5.5.2.0-17.7 rle_0.9.2              
[76] dplyr_1.0.7             fastmap_1.1.0           bit_4.0.4              
[79] utf8_1.2.2              parallel_4.1.1          Rcpp_1.0.7             
[82] vctrs_0.3.8             png_0.1-7               DEoptimR_1.0-9         
[85] tidyselect_1.1.1        xfun_0.25               coda_0.19-4            

Total processing time was 18.95 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('anyMissing')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 18:48:43 (+0200 UTC). Powered by RSP.