matrixStats.benchmarks


weightedMedian() benchmarks

This report benchmark the performance of weightedMedian() against alternative methods.

Alternative methods

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:3]

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> w <- runif(length(x))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5411121 289.0    7916910 422.9  7916910 422.9
Vcells 10941647  83.5   39038428 297.9 94934136 724.3
> stats <- microbenchmark(weightedMedian = weightedMedian(x, w = w, ties = "mean", na.rm = FALSE), 
+     `limma::weighted.median` = limma_weighted.median(x, w = w, na.rm = FALSE), `cwhmisc::w.median` = cwhmisc_w.median(x, 
+         w = w), `laeken::weightedMedian` = laeken_weightedMedian(x, w = w), unit = "ms")

Table: Benchmarking of weightedMedian(), limma::weighted.median(), cwhmisc::w.median() and laeken::weightedMedian() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 weightedMedian 0.049771 0.0621750 0.0690443 0.0660595 0.0739120 0.133834
2 limma::weighted.median 0.079686 0.0893280 0.1032444 0.0982745 0.1141630 0.232075
3 cwhmisc::w.median 0.111127 0.1232115 0.1336499 0.1292615 0.1430555 0.190786
4 laeken::weightedMedian 0.153300 0.1737255 0.1964686 0.1845090 0.2110095 0.626636
  expr min lq mean median uq max
1 weightedMedian 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 limma::weighted.median 1.601053 1.436719 1.495336 1.487666 1.544580 1.734051
3 cwhmisc::w.median 2.232766 1.981689 1.935712 1.956743 1.935484 1.425542
4 laeken::weightedMedian 3.080107 2.794138 2.845543 2.793073 2.854875 4.682188

Figure: Benchmarking of weightedMedian(), limma::weighted.median(), cwhmisc::w.median() and laeken::weightedMedian() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> w <- runif(length(x))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5409434 288.9    7916910 422.9  7916910 422.9
Vcells 10542162  80.5   39038428 297.9 94934136 724.3
> stats <- microbenchmark(weightedMedian = weightedMedian(x, w = w, ties = "mean", na.rm = FALSE), 
+     `limma::weighted.median` = limma_weighted.median(x, w = w, na.rm = FALSE), `cwhmisc::w.median` = cwhmisc_w.median(x, 
+         w = w), `laeken::weightedMedian` = laeken_weightedMedian(x, w = w), unit = "ms")

Table: Benchmarking of weightedMedian(), limma::weighted.median(), cwhmisc::w.median() and laeken::weightedMedian() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 limma::weighted.median 0.550082 0.5588770 0.6009897 0.5618375 0.583609 1.030887
1 weightedMedian 0.564641 0.5769645 0.6158315 0.5815415 0.604659 0.949171
4 laeken::weightedMedian 0.651894 0.6599555 0.7142915 0.6664945 0.711960 1.147676
3 cwhmisc::w.median 0.679045 0.6990925 0.7443819 0.7056445 0.730986 1.213795
  expr min lq mean median uq max
2 limma::weighted.median 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 weightedMedian 1.026467 1.032364 1.024695 1.035071 1.036069 0.9207323
4 laeken::weightedMedian 1.185085 1.180860 1.188525 1.186276 1.219926 1.1132898
3 cwhmisc::w.median 1.234443 1.250888 1.238593 1.255958 1.252527 1.1774278

Figure: Benchmarking of weightedMedian(), limma::weighted.median(), cwhmisc::w.median() and laeken::weightedMedian() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> w <- runif(length(x))
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5409515 288.9    7916910 422.9  7916910 422.9
Vcells 10632728  81.2   39038428 297.9 94934136 724.3
> stats <- microbenchmark(weightedMedian = weightedMedian(x, w = w, ties = "mean", na.rm = FALSE), 
+     `limma::weighted.median` = limma_weighted.median(x, w = w, na.rm = FALSE), `cwhmisc::w.median` = cwhmisc_w.median(x, 
+         w = w), `laeken::weightedMedian` = laeken_weightedMedian(x, w = w), unit = "ms")

Table: Benchmarking of weightedMedian(), limma::weighted.median(), cwhmisc::w.median() and laeken::weightedMedian() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 limma::weighted.median 4.682831 4.821213 5.121895 4.903404 5.097217 8.068642
4 laeken::weightedMedian 5.063243 5.322617 5.911933 5.506824 5.925829 13.300783
3 cwhmisc::w.median 5.972863 6.166059 6.894042 6.306785 6.878705 15.306226
1 weightedMedian 6.812815 6.883257 7.137748 6.954033 7.214968 8.906691
  expr min lq mean median uq max
2 limma::weighted.median 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
4 laeken::weightedMedian 1.081236 1.104000 1.154247 1.123061 1.162562 1.648454
3 cwhmisc::w.median 1.275481 1.278943 1.345994 1.286205 1.349502 1.897002
1 weightedMedian 1.454850 1.427702 1.393576 1.418205 1.415472 1.103865

Figure: Benchmarking of weightedMedian(), limma::weighted.median(), cwhmisc::w.median() and laeken::weightedMedian() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         limma_3.48.3           
[16] glue_1.4.2              digest_0.6.27           XVector_0.32.0         
[19] colorspace_2.0-2        Matrix_1.3-4            XML_3.99-0.7           
[22] pkgconfig_2.0.3         zlibbioc_1.38.0         genefilter_1.74.0      
[25] purrr_0.3.4             ergm_4.1.2              xtable_1.8-4           
[28] scales_1.1.1            tibble_3.1.4            annotate_1.70.0        
[31] KEGGREST_1.32.0         farver_2.1.0            generics_0.1.0         
[34] IRanges_2.26.0          ellipsis_0.3.2          cachem_1.0.6           
[37] withr_2.4.2             BiocGenerics_0.38.0     mime_0.11              
[40] survival_3.2-13         magrittr_2.0.1          crayon_1.4.1           
[43] statnet.common_4.5.0    memoise_2.0.0           laeken_0.5.1           
[46] fansi_0.5.0             R.cache_0.15.0          MASS_7.3-54            
[49] R.rsp_0.44.0            progressr_0.8.0         tools_4.1.1            
[52] lifecycle_1.0.0         S4Vectors_0.30.0        trust_0.1-8            
[55] munsell_0.5.0           tabby_0.0.1-9001        AnnotationDbi_1.54.1   
[58] Biostrings_2.60.2       compiler_4.1.1          GenomeInfoDb_1.28.1    
[61] rlang_0.4.11            grid_4.1.1              RCurl_1.98-1.4         
[64] cwhmisc_6.6             rstudioapi_0.13         rappdirs_0.3.3         
[67] startup_0.15.0-9000     labeling_0.4.2          bitops_1.0-7           
[70] base64enc_0.1-3         boot_1.3-28             gtable_0.3.0           
[73] DBI_1.1.1               markdown_1.1            R6_2.5.1               
[76] lpSolveAPI_5.5.2.0-17.7 rle_0.9.2               dplyr_1.0.7            
[79] fastmap_1.1.0           bit_4.0.4               utf8_1.2.2             
[82] parallel_4.1.1          Rcpp_1.0.7              vctrs_0.3.8            
[85] png_0.1-7               DEoptimR_1.0-9          tidyselect_1.1.1       
[88] xfun_0.25               coda_0.19-4            

Total processing time was 7.56 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('weightedMedian')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:52:58 (+0200 UTC). Powered by RSP.