matrixStats.benchmarks


varDiff() benchmarks on subsetted computation

This report benchmark the performance of varDiff() on subsetted computation.

Data type “integer”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]

Results

n = 1000 vector

All elements

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5362844 286.5    7916910 422.9  7916910 422.9
Vcells 11153947  85.1   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 0.022212 0.0226885 0.0236181 0.0228800 0.023157 0.087388
3 varDiff(x[idxs]) 0.025511 0.0260000 0.0290972 0.0262840 0.026625 0.281070
2 varDiff(x, idxs) 0.025429 0.0260535 0.0264321 0.0263085 0.026717 0.030500
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 varDiff(x[idxs]) 1.148523 1.145955 1.231988 1.148776 1.149760 3.2163455
2 varDiff(x, idxs) 1.144832 1.148313 1.119146 1.149847 1.153733 0.3490182

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

All elements

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5359912 286.3    7916910 422.9  7916910 422.9
Vcells 10899708  83.2   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 0.066079 0.0671120 0.0757118 0.0753615 0.0830735 0.096079
3 varDiff(x[idxs]) 0.084400 0.0867175 0.0959805 0.0942560 0.1029010 0.181812
2 varDiff(x, idxs) 0.083807 0.0856580 0.0961852 0.0946705 0.1064495 0.119259
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 varDiff(x[idxs]) 1.277259 1.292131 1.267709 1.250718 1.238674 1.892318
2 varDiff(x, idxs) 1.268285 1.276344 1.270412 1.256218 1.281389 1.241260

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

All elements

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5359984 286.3    7916910 422.9  7916910 422.9
Vcells 10963268  83.7   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 0.413811 0.5045290 0.5857393 0.544012 0.6621690 1.213714
3 varDiff(x[idxs]) 0.561553 0.6705570 0.9228240 0.789193 0.8980275 13.785594
2 varDiff(x, idxs) 0.560413 0.7139785 0.7980298 0.835218 0.8945030 0.995830
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 varDiff(x[idxs]) 1.357028 1.329075 1.575486 1.450690 1.356191 11.3581898
2 varDiff(x, idxs) 1.354273 1.415139 1.362432 1.535293 1.350868 0.8204816

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

All elements

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5360056 286.3    7916910 422.9  7916910 422.9
Vcells 11593317  88.5   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 4.635450 5.266083 5.782645 5.402392 5.53224 12.76769
2 varDiff(x, idxs) 8.392257 8.700843 10.176747 8.977796 10.06822 36.72024
3 varDiff(x[idxs]) 8.040496 8.723145 10.411642 9.023121 11.38572 18.65386
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 varDiff(x, idxs) 1.810451 1.652242 1.759878 1.661819 1.819917 2.876029
3 varDiff(x[idxs]) 1.734566 1.656477 1.800498 1.670209 2.058066 1.461021

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)
> data <- data[1:4]

Results

n = 1000 vector

All elements

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5360131 286.3    7916910 422.9  7916910 422.9
Vcells 11450125  87.4   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 0.019873 0.0202375 0.0205991 0.0204165 0.0208305 0.022106
2 varDiff(x, idxs) 0.022824 0.0232165 0.0238168 0.0234755 0.0237265 0.040249
3 varDiff(x[idxs]) 0.022967 0.0233720 0.0242683 0.0236040 0.0238445 0.080263
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 varDiff(x, idxs) 1.148493 1.147202 1.156203 1.149830 1.139027 1.820727
3 varDiff(x[idxs]) 1.155689 1.154886 1.178122 1.156124 1.144692 3.630824

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

All elements

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5360200 286.3    7916910 422.9  7916910 422.9
Vcells 11459871  87.5   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 0.051286 0.0566970 0.0604725 0.0604575 0.0612570 0.119799
2 varDiff(x, idxs) 0.070962 0.0764785 0.0825251 0.0808835 0.0832660 0.159821
3 varDiff(x[idxs]) 0.068973 0.0763860 0.0826795 0.0809315 0.0841145 0.157204
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 varDiff(x, idxs) 1.383652 1.348899 1.364672 1.337857 1.359290 1.334076
3 varDiff(x[idxs]) 1.344870 1.347267 1.367225 1.338651 1.373141 1.312231

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

All elements

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5360272 286.3    7916910 422.9  7916910 422.9
Vcells 11554724  88.2   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 0.288761 0.3207845 0.4215957 0.3459820 0.3860495 6.478759
2 varDiff(x, idxs) 0.462206 0.4887105 0.5596582 0.5506450 0.5942060 0.767178
3 varDiff(x[idxs]) 0.462960 0.5058240 0.5859137 0.5544025 0.6596335 0.924736
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 varDiff(x, idxs) 1.600652 1.523485 1.327476 1.591542 1.539196 0.1184143
3 varDiff(x[idxs]) 1.603264 1.576834 1.389752 1.602403 1.708676 0.1427335

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

All elements

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5360344 286.3    7916910 422.9  7916910 422.9
Vcells 12500132  95.4   39038428 297.9 94934136 724.3
> stats <- microbenchmark(varDiff_x_S = varDiff(x_S), `varDiff(x, idxs)` = varDiff(x, idxs = idxs), 
+     `varDiff(x[idxs])` = varDiff(x[idxs]), unit = "ms")

Table: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 varDiff_x_S 3.927409 4.711675 5.06201 4.806298 4.896624 13.03601
3 varDiff(x[idxs]) 10.176256 11.106651 12.07334 11.327246 11.979828 20.81063
2 varDiff(x, idxs) 10.679407 11.178492 12.12324 11.399456 11.807109 23.43775
  expr min lq mean median uq max
1 varDiff_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 varDiff(x[idxs]) 2.591086 2.357262 2.385088 2.356750 2.446548 1.596395
2 varDiff(x, idxs) 2.719199 2.372509 2.394945 2.371774 2.411275 1.797923

Figure: Benchmarking of varDiff_x_S(), varDiff(x, idxs)() and varDiff(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rstudioapi_0.13         rappdirs_0.3.3          startup_0.15.0-9000    
[67] labeling_0.4.2          bitops_1.0-7            base64enc_0.1-3        
[70] boot_1.3-28             gtable_0.3.0            DBI_1.1.1              
[73] markdown_1.1            R6_2.5.1                lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2               dplyr_1.0.7             fastmap_1.1.0          
[79] bit_4.0.4               utf8_1.2.2              parallel_4.1.1         
[82] Rcpp_1.0.7              vctrs_0.3.8             png_0.1-7              
[85] DEoptimR_1.0-9          tidyselect_1.1.1        xfun_0.25              
[88] coda_0.19-4            

Total processing time was 14.48 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('varDiff_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 22:51:52 (+0200 UTC). Powered by RSP.