matrixStats.benchmarks


logSumExp() benchmarks on subsetted computation

This report benchmark the performance of logSumExp() on subsetted computation.

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = "double")
> data <- data[1:4]

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5344003 285.5    7916910 422.9  7916910 422.9
Vcells 11773401  89.9   36893127 281.5 57430649 438.2
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 0.015992 0.0167825 0.0173882 0.0168795 0.0169820 0.037199
3 logSumExp(x[idxs]) 0.018401 0.0193560 0.0214968 0.0195630 0.0197525 0.119437
2 logSumExp(x, idxs) 0.019504 0.0203955 0.0205936 0.0205040 0.0206095 0.030093
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 logSumExp(x[idxs]) 1.150638 1.153344 1.236287 1.158980 1.163143 3.2107584
2 logSumExp(x, idxs) 1.219610 1.215284 1.184344 1.214728 1.213609 0.8089734

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5340765 285.3    7916910 422.9  7916910 422.9
Vcells 11439488  87.3   36893127 281.5 57430649 438.2
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 0.107942 0.1155185 0.1326706 0.1234485 0.148291 0.227294
3 logSumExp(x[idxs]) 0.122316 0.1346590 0.1504823 0.1405490 0.163293 0.267099
2 logSumExp(x, idxs) 0.138869 0.1499025 0.1718531 0.1632120 0.190533 0.282027
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 1.133164 1.165692 1.134256 1.138523 1.101166 1.175126
2 logSumExp(x, idxs) 1.286515 1.297649 1.295337 1.322106 1.284859 1.240803

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5340837 285.3    7916910 422.9  7916910 422.9
Vcells 11534548  88.1   36893127 281.5 57430649 438.2
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 0.905993 0.9066275 0.9577668 0.9084235 0.921494 1.597944
3 logSumExp(x[idxs]) 1.085253 1.0978600 1.1642811 1.1007840 1.109797 1.930893
2 logSumExp(x, idxs) 1.463108 1.4638735 1.5068310 1.4664320 1.468910 2.205679
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 1.197860 1.210927 1.215621 1.211752 1.204346 1.208361
2 logSumExp(x, idxs) 1.614922 1.614636 1.573276 1.614260 1.594053 1.380323

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5340909 285.3    7916910 422.9  7916910 422.9
Vcells 12479597  95.3   36893127 281.5 57430649 438.2
> stats <- microbenchmark(logSumExp_x_S = logSumExp(x_S), `logSumExp(x, idxs)` = logSumExp(x, idxs = idxs), 
+     `logSumExp(x[idxs])` = logSumExp(x[idxs]), unit = "ms")

Table: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 logSumExp_x_S 9.222615 11.48087 12.64326 12.42652 13.75433 16.48410
3 logSumExp(x[idxs]) 18.627014 21.55948 23.33542 22.88887 24.69123 38.75325
2 logSumExp(x, idxs) 34.404055 40.45209 46.56888 46.82454 51.61983 66.48265
  expr min lq mean median uq max
1 logSumExp_x_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 logSumExp(x[idxs]) 2.019711 1.877861 1.845681 1.841938 1.795161 2.350947
2 logSumExp(x, idxs) 3.730401 3.523433 3.683296 3.768114 3.752988 4.033137

Figure: Benchmarking of logSumExp_x_S(), logSumExp(x, idxs)() and logSumExp(x[idxs])() on n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rstudioapi_0.13         rappdirs_0.3.3          startup_0.15.0-9000    
[67] labeling_0.4.2          bitops_1.0-7            base64enc_0.1-3        
[70] boot_1.3-28             gtable_0.3.0            DBI_1.1.1              
[73] markdown_1.1            R6_2.5.1                lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2               dplyr_1.0.7             fastmap_1.1.0          
[79] bit_4.0.4               utf8_1.2.2              parallel_4.1.1         
[82] Rcpp_1.0.7              vctrs_0.3.8             png_0.1-7              
[85] DEoptimR_1.0-9          tidyselect_1.1.1        xfun_0.25              
[88] coda_0.19-4            

Total processing time was 12.95 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('logSumExp_subset')

Copyright Dongcan Jiang. Last updated on 2021-08-25 22:35:17 (+0200 UTC). Powered by RSP.