This report benchmark the performance of indexByRow() against alternative methods:
indexByRow_R1() based in matrix(..., byrow = TRUE)indexByRow_R2() is a modified version of indexByRow_R1()where indexByRow_R1() and indexByRow_R2() are defined as in the Appendix.
> data <- rmatrices(mode = "index")
where rmatrices() is defined in the Appendix.
> X <- data[["10x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50] 1 3 5 7 9 11 13 15 17 19 ...
> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.001282 | 0.0016435 | 0.0018852 | 0.0017985 | 0.001945 | 0.009008 | 
| 3 | indexByRow_R2 | 0.006167 | 0.0068870 | 0.0071962 | 0.0071035 | 0.007310 | 0.013159 | 
| 2 | indexByRow_R1 | 0.006154 | 0.0069255 | 0.0074135 | 0.0071710 | 0.007465 | 0.028892 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | indexByRow_R2 | 4.810452 | 4.190447 | 3.817218 | 3.949680 | 3.758355 | 1.460813 | 
| 2 | indexByRow_R1 | 4.800312 | 4.213873 | 3.932485 | 3.987212 | 3.838046 | 3.207371 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.002608 | 0.0028595 | 0.0030970 | 0.0030175 | 0.0031545 | 0.010545 | 
| 2 | indexByRow_R1 | 0.006912 | 0.0074970 | 0.0080785 | 0.0077735 | 0.0081135 | 0.025745 | 
| 3 | indexByRow_R2 | 0.008396 | 0.0090915 | 0.0096742 | 0.0093155 | 0.0096055 | 0.032637 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 2.650307 | 2.621787 | 2.608511 | 2.576139 | 2.572040 | 2.441441 | 
| 3 | indexByRow_R2 | 3.219325 | 3.179402 | 3.123750 | 3.087158 | 3.045015 | 3.095021 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.002114 | 0.0024910 | 0.0028393 | 0.0026600 | 0.0028180 | 0.018345 | 
| 3 | indexByRow_R2 | 0.005747 | 0.0066405 | 0.0069985 | 0.0068935 | 0.0071700 | 0.016073 | 
| 2 | indexByRow_R1 | 0.006692 | 0.0075480 | 0.0081590 | 0.0078975 | 0.0082915 | 0.028833 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 3 | indexByRow_R2 | 2.718543 | 2.665797 | 2.464875 | 2.591541 | 2.544358 | 0.8761515 | 
| 2 | indexByRow_R1 | 3.165563 | 3.030108 | 2.873589 | 2.968985 | 2.942335 | 1.5717089 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...
> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.015252 | 0.0161600 | 0.0177820 | 0.0172175 | 0.0179435 | 0.065262 | 
| 3 | indexByRow_R2 | 0.073665 | 0.0769315 | 0.0826033 | 0.0819060 | 0.0866595 | 0.153746 | 
| 2 | indexByRow_R1 | 0.074657 | 0.0783730 | 0.0837017 | 0.0844410 | 0.0866765 | 0.108103 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | indexByRow_R2 | 4.829858 | 4.760613 | 4.645338 | 4.757137 | 4.829576 | 2.355827 | 
| 2 | indexByRow_R1 | 4.894899 | 4.849814 | 4.707109 | 4.904371 | 4.830524 | 1.656446 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 0.073030 | 0.0864855 | 0.0963237 | 0.0928365 | 0.104936 | 0.156011 | 
| 1 | indexByRow | 0.081498 | 0.0924100 | 0.1052432 | 0.1017470 | 0.119113 | 0.155555 | 
| 3 | indexByRow_R2 | 0.299841 | 0.3473715 | 0.3912514 | 0.3782655 | 0.427674 | 0.531842 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 1 | indexByRow | 1.115952 | 1.068503 | 1.092599 | 1.095981 | 1.135101 | 0.9970771 | 
| 3 | indexByRow_R2 | 4.105724 | 4.016529 | 4.061838 | 4.074534 | 4.075570 | 3.4090032 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.055356 | 0.0599685 | 0.0660457 | 0.0620160 | 0.0713825 | 0.090670 | 
| 2 | indexByRow_R1 | 0.087818 | 0.0946170 | 0.1042238 | 0.0997865 | 0.1118695 | 0.135953 | 
| 3 | indexByRow_R2 | 0.177048 | 0.1883325 | 0.2090049 | 0.1999050 | 0.2248520 | 0.280346 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 1.586422 | 1.577778 | 1.578057 | 1.609044 | 1.567184 | 1.499426 | 
| 3 | indexByRow_R2 | 3.198352 | 3.140524 | 3.164550 | 3.223442 | 3.149960 | 3.091938 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...
> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.014092 | 0.0159260 | 0.0167545 | 0.0167715 | 0.0172140 | 0.024884 | 
| 3 | indexByRow_R2 | 0.072366 | 0.0781810 | 0.0828228 | 0.0843585 | 0.0854785 | 0.098342 | 
| 2 | indexByRow_R1 | 0.072171 | 0.0780595 | 0.0832589 | 0.0845390 | 0.0856575 | 0.115141 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | indexByRow_R2 | 5.135254 | 4.909017 | 4.943302 | 5.029872 | 4.965638 | 3.952017 | 
| 2 | indexByRow_R1 | 5.121416 | 4.901388 | 4.969332 | 5.040634 | 4.976037 | 4.627110 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 0.074761 | 0.0810275 | 0.0915757 | 0.0891510 | 0.0978105 | 0.127025 | 
| 1 | indexByRow | 0.083101 | 0.0937025 | 0.1042172 | 0.1002460 | 0.1129245 | 0.143002 | 
| 3 | indexByRow_R2 | 0.316553 | 0.3533775 | 0.3849551 | 0.3771155 | 0.4034030 | 0.546913 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | indexByRow | 1.111555 | 1.156428 | 1.138045 | 1.124452 | 1.154523 | 1.125778 | 
| 3 | indexByRow_R2 | 4.234200 | 4.361205 | 4.203683 | 4.230076 | 4.124332 | 4.305554 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.058981 | 0.0608665 | 0.0665945 | 0.0641555 | 0.0715370 | 0.087223 | 
| 2 | indexByRow_R1 | 0.091585 | 0.0955840 | 0.1065472 | 0.1032885 | 0.1176660 | 0.176565 | 
| 3 | indexByRow_R2 | 0.187444 | 0.1895135 | 0.2122267 | 0.2009670 | 0.2389775 | 0.279790 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 1.552788 | 1.570388 | 1.599940 | 1.609971 | 1.644827 | 2.024294 | 
| 3 | indexByRow_R2 | 3.178040 | 3.113593 | 3.186852 | 3.132498 | 3.340614 | 3.207755 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...
> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.014967 | 0.0160025 | 0.0167037 | 0.0165680 | 0.0169950 | 0.032126 | 
| 3 | indexByRow_R2 | 0.076358 | 0.0782465 | 0.0830444 | 0.0822775 | 0.0857780 | 0.103863 | 
| 2 | indexByRow_R1 | 0.076306 | 0.0795235 | 0.0835379 | 0.0830110 | 0.0857735 | 0.112211 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | indexByRow_R2 | 5.101757 | 4.889642 | 4.971619 | 4.966049 | 5.047249 | 3.232989 | 
| 2 | indexByRow_R1 | 5.098283 | 4.969442 | 5.001164 | 5.010321 | 5.046984 | 3.492841 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 0.072936 | 0.0834525 | 0.0937125 | 0.0920540 | 0.1014270 | 0.130469 | 
| 1 | indexByRow | 0.084448 | 0.0916775 | 0.1042213 | 0.1025965 | 0.1112685 | 0.142197 | 
| 3 | indexByRow_R2 | 0.307719 | 0.3373145 | 0.3758221 | 0.3685620 | 0.4040380 | 0.494355 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 1 | indexByRow | 1.157837 | 1.098559 | 1.112139 | 1.114525 | 1.097030 | 1.089891 | 
| 3 | indexByRow_R2 | 4.219028 | 4.041994 | 4.010373 | 4.003759 | 3.983535 | 3.789061 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.057493 | 0.0612405 | 0.0653401 | 0.0621600 | 0.0701970 | 0.088982 | 
| 2 | indexByRow_R1 | 0.087120 | 0.0938180 | 0.1042518 | 0.0985685 | 0.1142000 | 0.183106 | 
| 3 | indexByRow_R2 | 0.174264 | 0.1841790 | 0.1988696 | 0.1904060 | 0.2120615 | 0.250581 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 1.515315 | 1.531960 | 1.595525 | 1.585722 | 1.626850 | 2.057787 | 
| 3 | indexByRow_R2 | 3.031047 | 3.007471 | 3.043607 | 3.063160 | 3.020948 | 2.816086 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...
> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.099124 | 0.1175865 | 0.1505342 | 0.1324315 | 0.2031230 | 0.220248 | 
| 3 | indexByRow_R2 | 0.525359 | 0.6359585 | 0.8410909 | 0.6781020 | 0.8273405 | 12.569268 | 
| 2 | indexByRow_R1 | 0.524381 | 0.6389070 | 0.7295728 | 0.7045310 | 0.8274250 | 1.127695 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 3 | indexByRow_R2 | 5.300018 | 5.408431 | 5.587372 | 5.120398 | 4.073101 | 57.068704 | 
| 2 | indexByRow_R1 | 5.290152 | 5.433506 | 4.846557 | 5.319965 | 4.073517 | 5.120115 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 0.676463 | 0.684153 | 0.9069105 | 0.6973605 | 0.9944955 | 7.065740 | 
| 1 | indexByRow | 0.779384 | 0.782105 | 0.8616909 | 0.8484975 | 0.9002355 | 1.303930 | 
| 3 | indexByRow_R2 | 3.012132 | 3.031932 | 3.4665338 | 3.2426560 | 3.9203275 | 5.297835 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | indexByRow_R1 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 | 
| 1 | indexByRow | 1.152146 | 1.143173 | 0.9501388 | 1.216727 | 0.9052183 | 0.1845426 | 
| 3 | indexByRow_R2 | 4.452767 | 4.431658 | 3.8223547 | 4.649899 | 3.9420264 | 0.7497920 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.458584 | 0.4633480 | 0.5287863 | 0.529181 | 0.579864 | 0.710381 | 
| 2 | indexByRow_R1 | 0.691888 | 0.7261385 | 0.8803531 | 0.865033 | 1.029082 | 1.513058 | 
| 3 | indexByRow_R2 | 1.469839 | 1.4964135 | 1.8339744 | 1.828790 | 1.928001 | 8.186444 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 1.508749 | 1.567156 | 1.664856 | 1.634664 | 1.774695 | 2.129925 | 
| 3 | indexByRow_R2 | 3.205169 | 3.229567 | 3.468271 | 3.455887 | 3.324919 | 11.524019 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...
> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.108854 | 0.1236085 | 0.2695321 | 0.1354835 | 0.2066770 | 11.379597 | 
| 2 | indexByRow_R1 | 0.510801 | 0.6014975 | 0.6972782 | 0.6633375 | 0.8146630 | 0.875310 | 
| 3 | indexByRow_R2 | 0.511998 | 0.6085370 | 0.7112154 | 0.7047580 | 0.8220385 | 0.870048 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 
| 2 | indexByRow_R1 | 4.692533 | 4.86615 | 2.586995 | 4.896076 | 3.941721 | 0.0769192 | 
| 3 | indexByRow_R2 | 4.703530 | 4.92310 | 2.638704 | 5.201799 | 3.977407 | 0.0764568 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.779206 | 0.797280 | 0.8907752 | 0.894966 | 0.910122 | 1.359681 | 
| 2 | indexByRow_R1 | 0.659909 | 0.714930 | 0.8888209 | 0.965549 | 1.003583 | 1.629828 | 
| 3 | indexByRow_R2 | 2.993995 | 3.138649 | 3.8375815 | 3.901712 | 3.962118 | 15.189870 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 0.8468993 | 0.8967113 | 0.9978061 | 1.078867 | 1.102691 | 1.198684 | 
| 3 | indexByRow_R2 | 3.8423665 | 3.9366960 | 4.3081367 | 4.359621 | 4.353392 | 11.171643 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")
Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 0.459075 | 0.4646340 | 0.5462618 | 0.5710475 | 0.5814035 | 0.942403 | 
| 2 | indexByRow_R1 | 0.703373 | 0.7178475 | 0.8790656 | 0.8398025 | 1.0195915 | 2.193599 | 
| 3 | indexByRow_R2 | 1.489537 | 1.4968780 | 1.7872100 | 1.6315585 | 1.9249515 | 8.194279 | 
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | indexByRow | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 
| 2 | indexByRow_R1 | 1.532153 | 1.544974 | 1.609239 | 1.470635 | 1.753673 | 2.327666 | 
| 3 | indexByRow_R2 | 3.244648 | 3.221628 | 3.271710 | 2.857133 | 3.310870 | 8.695090 | 
Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    
loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rstudioapi_0.13         rappdirs_0.3.3          startup_0.15.0-9000    
[67] labeling_0.4.2          bitops_1.0-7            base64enc_0.1-3        
[70] boot_1.3-28             gtable_0.3.0            DBI_1.1.1              
[73] markdown_1.1            R6_2.5.1                lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2               dplyr_1.0.7             fastmap_1.1.0          
[79] bit_4.0.4               utf8_1.2.2              parallel_4.1.1         
[82] Rcpp_1.0.7              vctrs_0.3.8             png_0.1-7              
[85] DEoptimR_1.0-9          tidyselect_1.1.1        xfun_0.25              
[88] coda_0.19-4            
Total processing time was 19.77 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('indexByRow')
Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:35:02 (+0200 UTC). Powered by RSP.
> indexByRow_R1 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+     if (!is.null(idxs)) 
+         x <- x[idxs]
+     as.vector(x)
+ }
> indexByRow_R2 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     if (is.null(idxs)) {
+         x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+         as.vector(x)
+     }     else {
+         idxs <- idxs - 1
+         cols <- idxs%/%dim[2L]
+         rows <- idxs%%dim[2L]
+         cols + dim[1L] * rows + 1L
+     }
+ }
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }