matrixStats.benchmarks


indexByRow() benchmarks

This report benchmark the performance of indexByRow() against alternative methods:

where indexByRow_R1() and indexByRow_R2() are defined as in the Appendix.

Data

> data <- rmatrices(mode = "index")

where rmatrices() is defined in the Appendix.

Results

10x10 matrix

> X <- data[["10x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.001282 0.0016435 0.0018852 0.0017985 0.001945 0.009008
3 indexByRow_R2 0.006167 0.0068870 0.0071962 0.0071035 0.007310 0.013159
2 indexByRow_R1 0.006154 0.0069255 0.0074135 0.0071710 0.007465 0.028892
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 4.810452 4.190447 3.817218 3.949680 3.758355 1.460813
2 indexByRow_R1 4.800312 4.213873 3.932485 3.987212 3.838046 3.207371

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.002608 0.0028595 0.0030970 0.0030175 0.0031545 0.010545
2 indexByRow_R1 0.006912 0.0074970 0.0080785 0.0077735 0.0081135 0.025745
3 indexByRow_R2 0.008396 0.0090915 0.0096742 0.0093155 0.0096055 0.032637
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 2.650307 2.621787 2.608511 2.576139 2.572040 2.441441
3 indexByRow_R2 3.219325 3.179402 3.123750 3.087158 3.045015 3.095021

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.002114 0.0024910 0.0028393 0.0026600 0.0028180 0.018345
3 indexByRow_R2 0.005747 0.0066405 0.0069985 0.0068935 0.0071700 0.016073
2 indexByRow_R1 0.006692 0.0075480 0.0081590 0.0078975 0.0082915 0.028833
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
3 indexByRow_R2 2.718543 2.665797 2.464875 2.591541 2.544358 0.8761515
2 indexByRow_R1 3.165563 3.030108 2.873589 2.968985 2.942335 1.5717089

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix

> X <- data[["100x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.015252 0.0161600 0.0177820 0.0172175 0.0179435 0.065262
3 indexByRow_R2 0.073665 0.0769315 0.0826033 0.0819060 0.0866595 0.153746
2 indexByRow_R1 0.074657 0.0783730 0.0837017 0.0844410 0.0866765 0.108103
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 4.829858 4.760613 4.645338 4.757137 4.829576 2.355827
2 indexByRow_R1 4.894899 4.849814 4.707109 4.904371 4.830524 1.656446

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.073030 0.0864855 0.0963237 0.0928365 0.104936 0.156011
1 indexByRow 0.081498 0.0924100 0.1052432 0.1017470 0.119113 0.155555
3 indexByRow_R2 0.299841 0.3473715 0.3912514 0.3782655 0.427674 0.531842
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
1 indexByRow 1.115952 1.068503 1.092599 1.095981 1.135101 0.9970771
3 indexByRow_R2 4.105724 4.016529 4.061838 4.074534 4.075570 3.4090032

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.055356 0.0599685 0.0660457 0.0620160 0.0713825 0.090670
2 indexByRow_R1 0.087818 0.0946170 0.1042238 0.0997865 0.1118695 0.135953
3 indexByRow_R2 0.177048 0.1883325 0.2090049 0.1999050 0.2248520 0.280346
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.586422 1.577778 1.578057 1.609044 1.567184 1.499426
3 indexByRow_R2 3.198352 3.140524 3.164550 3.223442 3.149960 3.091938

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix

> X <- data[["1000x10"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.014092 0.0159260 0.0167545 0.0167715 0.0172140 0.024884
3 indexByRow_R2 0.072366 0.0781810 0.0828228 0.0843585 0.0854785 0.098342
2 indexByRow_R1 0.072171 0.0780595 0.0832589 0.0845390 0.0856575 0.115141
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 5.135254 4.909017 4.943302 5.029872 4.965638 3.952017
2 indexByRow_R1 5.121416 4.901388 4.969332 5.040634 4.976037 4.627110

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.074761 0.0810275 0.0915757 0.0891510 0.0978105 0.127025
1 indexByRow 0.083101 0.0937025 0.1042172 0.1002460 0.1129245 0.143002
3 indexByRow_R2 0.316553 0.3533775 0.3849551 0.3771155 0.4034030 0.546913
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 indexByRow 1.111555 1.156428 1.138045 1.124452 1.154523 1.125778
3 indexByRow_R2 4.234200 4.361205 4.203683 4.230076 4.124332 4.305554

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.058981 0.0608665 0.0665945 0.0641555 0.0715370 0.087223
2 indexByRow_R1 0.091585 0.0955840 0.1065472 0.1032885 0.1176660 0.176565
3 indexByRow_R2 0.187444 0.1895135 0.2122267 0.2009670 0.2389775 0.279790
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.552788 1.570388 1.599940 1.609971 1.644827 2.024294
3 indexByRow_R2 3.178040 3.113593 3.186852 3.132498 3.340614 3.207755

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x10+odd data. Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix

> X <- data[["10x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:10000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:5000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.014967 0.0160025 0.0167037 0.0165680 0.0169950 0.032126
3 indexByRow_R2 0.076358 0.0782465 0.0830444 0.0822775 0.0857780 0.103863
2 indexByRow_R1 0.076306 0.0795235 0.0835379 0.0830110 0.0857735 0.112211
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 5.101757 4.889642 4.971619 4.966049 5.047249 3.232989
2 indexByRow_R1 5.098283 4.969442 5.001164 5.010321 5.046984 3.492841

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.072936 0.0834525 0.0937125 0.0920540 0.1014270 0.130469
1 indexByRow 0.084448 0.0916775 0.1042213 0.1025965 0.1112685 0.142197
3 indexByRow_R2 0.307719 0.3373145 0.3758221 0.3685620 0.4040380 0.494355
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1 indexByRow 1.157837 1.098559 1.112139 1.114525 1.097030 1.089891
3 indexByRow_R2 4.219028 4.041994 4.010373 4.003759 3.983535 3.789061

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.057493 0.0612405 0.0653401 0.0621600 0.0701970 0.088982
2 indexByRow_R1 0.087120 0.0938180 0.1042518 0.0985685 0.1142000 0.183106
3 indexByRow_R2 0.174264 0.1841790 0.1988696 0.1904060 0.2120615 0.250581
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.515315 1.531960 1.595525 1.585722 1.626850 2.057787
3 indexByRow_R2 3.031047 3.007471 3.043607 3.063160 3.020948 2.816086

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 10x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix

> X <- data[["100x1000"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.099124 0.1175865 0.1505342 0.1324315 0.2031230 0.220248
3 indexByRow_R2 0.525359 0.6359585 0.8410909 0.6781020 0.8273405 12.569268
2 indexByRow_R1 0.524381 0.6389070 0.7295728 0.7045310 0.8274250 1.127695
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 indexByRow_R2 5.300018 5.408431 5.587372 5.120398 4.073101 57.068704
2 indexByRow_R1 5.290152 5.433506 4.846557 5.319965 4.073517 5.120115

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
2 indexByRow_R1 0.676463 0.684153 0.9069105 0.6973605 0.9944955 7.065740
1 indexByRow 0.779384 0.782105 0.8616909 0.8484975 0.9002355 1.303930
3 indexByRow_R2 3.012132 3.031932 3.4665338 3.2426560 3.9203275 5.297835
  expr min lq mean median uq max
2 indexByRow_R1 1.000000 1.000000 1.0000000 1.000000 1.0000000 1.0000000
1 indexByRow 1.152146 1.143173 0.9501388 1.216727 0.9052183 0.1845426
3 indexByRow_R2 4.452767 4.431658 3.8223547 4.649899 3.9420264 0.7497920

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.458584 0.4633480 0.5287863 0.529181 0.579864 0.710381
2 indexByRow_R1 0.691888 0.7261385 0.8803531 0.865033 1.029082 1.513058
3 indexByRow_R2 1.469839 1.4964135 1.8339744 1.828790 1.928001 8.186444
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.508749 1.567156 1.664856 1.634664 1.774695 2.129925
3 indexByRow_R2 3.205169 3.229567 3.468271 3.455887 3.324919 11.524019

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 100x1000+odd data. Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix

> X <- data[["1000x100"]]
> dim <- dim(X)
> idxsList <- list(`all-by-NULL` = NULL, all = seq_len(prod(dim)), odd = seq(from = 1, to = prod(dim), 
+     by = 2L))
> str(idxsList)
List of 3
 $ all-by-NULL: NULL
 $ all        : int [1:100000] 1 2 3 4 5 6 7 8 9 10 ...
 $ odd        : num [1:50000] 1 3 5 7 9 11 13 15 17 19 ...

Index set ‘all-by-NULL’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.108854 0.1236085 0.2695321 0.1354835 0.2066770 11.379597
2 indexByRow_R1 0.510801 0.6014975 0.6972782 0.6633375 0.8146630 0.875310
3 indexByRow_R2 0.511998 0.6085370 0.7112154 0.7047580 0.8220385 0.870048
  expr min lq mean median uq max
1 indexByRow 1.000000 1.00000 1.000000 1.000000 1.000000 1.0000000
2 indexByRow_R1 4.692533 4.86615 2.586995 4.896076 3.941721 0.0769192
3 indexByRow_R2 4.703530 4.92310 2.638704 5.201799 3.977407 0.0764568

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all-by-NULL data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘all’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.779206 0.797280 0.8907752 0.894966 0.910122 1.359681
2 indexByRow_R1 0.659909 0.714930 0.8888209 0.965549 1.003583 1.629828
3 indexByRow_R2 2.993995 3.138649 3.8375815 3.901712 3.962118 15.189870
  expr min lq mean median uq max
1 indexByRow 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.000000
2 indexByRow_R1 0.8468993 0.8967113 0.9978061 1.078867 1.102691 1.198684
3 indexByRow_R2 3.8423665 3.9366960 4.3081367 4.359621 4.353392 11.171643

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+all data. Outliers are displayed as crosses. Times are in milliseconds.

Index set ‘odd’

> stats <- microbenchmark(indexByRow = indexByRow(dim, idxs = idxs), indexByRow_R1 = indexByRow_R1(dim, 
+     idxs = idxs), indexByRow_R2 = indexByRow_R2(dim, idxs = idxs), unit = "ms")

Table: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 indexByRow 0.459075 0.4646340 0.5462618 0.5710475 0.5814035 0.942403
2 indexByRow_R1 0.703373 0.7178475 0.8790656 0.8398025 1.0195915 2.193599
3 indexByRow_R2 1.489537 1.4968780 1.7872100 1.6315585 1.9249515 8.194279
  expr min lq mean median uq max
1 indexByRow 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
2 indexByRow_R1 1.532153 1.544974 1.609239 1.470635 1.753673 2.327666
3 indexByRow_R2 3.244648 3.221628 3.271710 2.857133 3.310870 8.695090

Figure: Benchmarking of indexByRow(), indexByRow_R1() and indexByRow_R2() on 1000x100+odd data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rstudioapi_0.13         rappdirs_0.3.3          startup_0.15.0-9000    
[67] labeling_0.4.2          bitops_1.0-7            base64enc_0.1-3        
[70] boot_1.3-28             gtable_0.3.0            DBI_1.1.1              
[73] markdown_1.1            R6_2.5.1                lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2               dplyr_1.0.7             fastmap_1.1.0          
[79] bit_4.0.4               utf8_1.2.2              parallel_4.1.1         
[82] Rcpp_1.0.7              vctrs_0.3.8             png_0.1-7              
[85] DEoptimR_1.0-9          tidyselect_1.1.1        xfun_0.25              
[88] coda_0.19-4            

Total processing time was 19.77 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('indexByRow')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:35:02 (+0200 UTC). Powered by RSP.

Local functions

> indexByRow_R1 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+     if (!is.null(idxs)) 
+         x <- x[idxs]
+     as.vector(x)
+ }
> indexByRow_R2 <- function(dim, idxs = NULL, ...) {
+     n <- prod(dim)
+     if (is.null(idxs)) {
+         x <- matrix(seq_len(n), nrow = dim[2L], ncol = dim[1L], byrow = TRUE)
+         as.vector(x)
+     }     else {
+         idxs <- idxs - 1
+         cols <- idxs%/%dim[2L]
+         rows <- idxs%%dim[2L]
+         cols + dim[1L] * rows + 1L
+     }
+ }
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100, 
+     +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     n <- nrow * ncol
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else if (mode == "index") {
+         x <- seq_len(n)
+         mode <- "integer"
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     dim(x) <- c(nrow, ncol)
+     x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+     data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+     data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+     data[[4]] <- t(data[[3]])
+     data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+     data[[6]] <- t(data[[5]])
+     names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+     data
+ }