matrixStats.benchmarks


count() benchmarks

This report benchmark the performance of count() against alternative methods.

Alternative methods

Data type “integer”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5340860 285.3    7916910 422.9  7916910 422.9
Vcells 37506549 286.2   57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.003120 0.0032720 0.0036362 0.0034155 0.0035445 0.023587
2 sum(x == value) 0.004364 0.0044715 0.0046578 0.0045425 0.0046575 0.013465
  expr min lq mean median uq max
1 count 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000
2 sum(x == value) 1.398718 1.366595 1.280956 1.329966 1.314008 0.5708653

Figure: Benchmarking of count() and sum(x == value)() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5338627 285.2    7916910 422.9  7916910 422.9
Vcells 15871293 121.1   57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.003210 0.0034375 0.0043672 0.003896 0.0042845 0.024847
2 sum(x == value) 0.038699 0.0389085 0.0401716 0.039055 0.0392785 0.057316
  expr min lq mean median uq max
1 count 1.00000 1.00000 1.000000 1.00000 1.000000 1.000000
2 sum(x == value) 12.05576 11.31884 9.198576 10.02438 9.167581 2.306757

Figure: Benchmarking of count() and sum(x == value)() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5338690 285.2    7916910 422.9  7916910 422.9
Vcells 15871335 121.1   57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.002458 0.0028375 0.0039312 0.0036480 0.0044205 0.02412
2 sum(x == value) 0.293736 0.3039170 0.3315467 0.3196135 0.3615910 0.40162
  expr min lq mean median uq max
1 count 1.000 1.0000 1.00000 1.00000 1.00000 1.00000
2 sum(x == value) 119.502 107.1073 84.33685 87.61335 81.79867 16.65091

Figure: Benchmarking of count() and sum(x == value)() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5338753 285.2    7916910 422.9  7916910 422.9
Vcells 15871890 121.1   57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.001994 0.0024515 0.0110779 0.0095445 0.0191595 0.03722
2 sum(x == value) 3.525143 3.5498585 4.0291448 3.6116965 3.9686680 21.94083
  expr min lq mean median uq max
1 count 1.000 1.000 1.0000 1.000 1.0000 1.0000
2 sum(x == value) 1767.875 1448.035 363.7111 378.406 207.1384 589.4904

Figure: Benchmarking of count() and sum(x == value)() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000000 vector

> x <- data[["n = 10000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5338816 285.2    7916910 422.9  7916910 422.9
Vcells 15871932 121.1   57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.001994 0.002471 0.0145752 0.003806 0.0284725 0.033778
2 sum(x == value) 35.821991 36.044041 43.5296509 36.527983 37.7079685 448.575286
  expr min lq mean median uq max
1 count 1.00 1.00 1.000 1.000 1.000 1.0
2 sum(x == value) 17964.89 14586.82 2986.562 9597.473 1324.365 13280.1

Figure: Benchmarking of count() and sum(x == value)() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”

Data

> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+     mode <- match.arg(mode)
+     if (mode == "logical") {
+         x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+     }     else {
+         x <- runif(n, min = range[1], max = range[2])
+     }
+     storage.mode(x) <- mode
+     if (na_prob > 0) 
+         x[sample(n, size = na_prob * n)] <- NA
+     x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+     set.seed(seed)
+     data <- list()
+     data[[1]] <- rvector(n = scale * 100, ...)
+     data[[2]] <- rvector(n = scale * 1000, ...)
+     data[[3]] <- rvector(n = scale * 10000, ...)
+     data[[4]] <- rvector(n = scale * 1e+05, ...)
+     data[[5]] <- rvector(n = scale * 1e+06, ...)
+     names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+     data
+ }
> data <- rvectors(mode = mode)

Results

n = 1000 vector

> x <- data[["n = 1000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5338879 285.2    7916910 422.9  7916910 422.9
Vcells 21427804 163.5   57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.003213 0.003367 0.0038157 0.003506 0.0036730 0.028853
2 sum(x == value) 0.003962 0.004087 0.0044005 0.004177 0.0043135 0.014167
  expr min lq mean median uq max
1 count 1.000000 1.00000 1.000000 1.000000 1.000000 1.0000000
2 sum(x == value) 1.233116 1.21384 1.153242 1.191386 1.174381 0.4910061

Figure: Benchmarking of count() and sum(x == value)() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000 vector

> x <- data[["n = 10000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5338942 285.2    7916910 422.9  7916910 422.9
Vcells 21427845 163.5   57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.003353 0.0035805 0.0044607 0.0039775 0.004524 0.041792
2 sum(x == value) 0.034566 0.0348665 0.0362590 0.0362600 0.036475 0.049126
  expr min lq mean median uq max
1 count 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000
2 sum(x == value) 10.30898 9.737886 8.128577 9.116279 8.062555 1.175488

Figure: Benchmarking of count() and sum(x == value)() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 100000 vector

> x <- data[["n = 100000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5339005 285.2    7916910 422.9  7916910 422.9
Vcells 21428169 163.5   57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.002589 0.003010 0.0041296 0.003672 0.0046585 0.024336
2 sum(x == value) 0.262221 0.271943 0.3024479 0.299344 0.3333360 0.369890
  expr min lq mean median uq max
1 count 1.0000 1.00000 1.00000 1.0000 1.00000 1.00000
2 sum(x == value) 101.2827 90.34651 73.23974 81.5207 71.55436 15.19929

Figure: Benchmarking of count() and sum(x == value)() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 1000000 vector

> x <- data[["n = 1000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5339068 285.2    7916910 422.9  7916910 422.9
Vcells 21428541 163.5   57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.001974 0.002463 0.0101218 0.009207 0.016290 0.033455
2 sum(x == value) 3.327507 3.421146 3.9162957 3.604121 4.058308 19.164505
  expr min lq mean median uq max
1 count 1.000 1.000 1.0000 1.0000 1.0000 1.0000
2 sum(x == value) 1685.667 1389.016 386.9173 391.4544 249.1288 572.8443

Figure: Benchmarking of count() and sum(x == value)() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.

n = 10000000 vector

> x <- data[["n = 10000000"]]
> gc()
           used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells  5339131 285.2    7916910 422.9  7916910 422.9
Vcells 21428583 163.5   57645510 439.9 57430649 438.2
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")

Table: Benchmarking of count() and sum(x == value)() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 count 0.001941 0.0024535 0.013511 0.0037645 0.025913 0.031865
2 sum(x == value) 32.971714 33.0920835 37.258351 33.4237675 35.454502 66.968885
  expr min lq mean median uq max
1 count 1.00 1.0 1.000 1.000 1.000 1.000
2 sum(x == value) 16986.97 13487.7 2757.623 8878.674 1368.213 2101.644

Figure: Benchmarking of count() and sum(x == value)() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rstudioapi_0.13         rappdirs_0.3.3          startup_0.15.0-9000    
[67] labeling_0.4.2          bitops_1.0-7            base64enc_0.1-3        
[70] boot_1.3-28             gtable_0.3.0            DBI_1.1.1              
[73] markdown_1.1            R6_2.5.1                lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2               dplyr_1.0.7             fastmap_1.1.0          
[79] bit_4.0.4               utf8_1.2.2              parallel_4.1.1         
[82] Rcpp_1.0.7              vctrs_0.3.8             png_0.1-7              
[85] DEoptimR_1.0-9          tidyselect_1.1.1        xfun_0.25              
[88] coda_0.19-4            

Total processing time was 23.11 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('count')

Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:34:41 (+0200 UTC). Powered by RSP.