This report benchmark the performance of count() against alternative methods.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5340860 285.3 7916910 422.9 7916910 422.9
Vcells 37506549 286.2 57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.003120 | 0.0032720 | 0.0036362 | 0.0034155 | 0.0035445 | 0.023587 |
2 | sum(x == value) | 0.004364 | 0.0044715 | 0.0046578 | 0.0045425 | 0.0046575 | 0.013465 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | sum(x == value) | 1.398718 | 1.366595 | 1.280956 | 1.329966 | 1.314008 | 0.5708653 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5338627 285.2 7916910 422.9 7916910 422.9
Vcells 15871293 121.1 57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.003210 | 0.0034375 | 0.0043672 | 0.003896 | 0.0042845 | 0.024847 |
2 | sum(x == value) | 0.038699 | 0.0389085 | 0.0401716 | 0.039055 | 0.0392785 | 0.057316 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | sum(x == value) | 12.05576 | 11.31884 | 9.198576 | 10.02438 | 9.167581 | 2.306757 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5338690 285.2 7916910 422.9 7916910 422.9
Vcells 15871335 121.1 57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002458 | 0.0028375 | 0.0039312 | 0.0036480 | 0.0044205 | 0.02412 |
2 | sum(x == value) | 0.293736 | 0.3039170 | 0.3315467 | 0.3196135 | 0.3615910 | 0.40162 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | sum(x == value) | 119.502 | 107.1073 | 84.33685 | 87.61335 | 81.79867 | 16.65091 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5338753 285.2 7916910 422.9 7916910 422.9
Vcells 15871890 121.1 57645510 439.9 53339345 407.0
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001994 | 0.0024515 | 0.0110779 | 0.0095445 | 0.0191595 | 0.03722 |
2 | sum(x == value) | 3.525143 | 3.5498585 | 4.0291448 | 3.6116965 | 3.9686680 | 21.94083 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000 | 1.000 | 1.0000 | 1.000 | 1.0000 | 1.0000 |
2 | sum(x == value) | 1767.875 | 1448.035 | 363.7111 | 378.406 | 207.1384 | 589.4904 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5338816 285.2 7916910 422.9 7916910 422.9
Vcells 15871932 121.1 57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001994 | 0.002471 | 0.0145752 | 0.003806 | 0.0284725 | 0.033778 |
2 | sum(x == value) | 35.821991 | 36.044041 | 43.5296509 | 36.527983 | 37.7079685 | 448.575286 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00 | 1.00 | 1.000 | 1.000 | 1.000 | 1.0 |
2 | sum(x == value) | 17964.89 | 14586.82 | 2986.562 | 9597.473 | 1324.365 | 13280.1 |
Figure: Benchmarking of count() and sum(x == value)() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5338879 285.2 7916910 422.9 7916910 422.9
Vcells 21427804 163.5 57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.003213 | 0.003367 | 0.0038157 | 0.003506 | 0.0036730 | 0.028853 |
2 | sum(x == value) | 0.003962 | 0.004087 | 0.0044005 | 0.004177 | 0.0043135 | 0.014167 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | sum(x == value) | 1.233116 | 1.21384 | 1.153242 | 1.191386 | 1.174381 | 0.4910061 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5338942 285.2 7916910 422.9 7916910 422.9
Vcells 21427845 163.5 57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.003353 | 0.0035805 | 0.0044607 | 0.0039775 | 0.004524 | 0.041792 |
2 | sum(x == value) | 0.034566 | 0.0348665 | 0.0362590 | 0.0362600 | 0.036475 | 0.049126 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum(x == value) | 10.30898 | 9.737886 | 8.128577 | 9.116279 | 8.062555 | 1.175488 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5339005 285.2 7916910 422.9 7916910 422.9
Vcells 21428169 163.5 57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.002589 | 0.003010 | 0.0041296 | 0.003672 | 0.0046585 | 0.024336 |
2 | sum(x == value) | 0.262221 | 0.271943 | 0.3024479 | 0.299344 | 0.3333360 | 0.369890 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.0000 | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 |
2 | sum(x == value) | 101.2827 | 90.34651 | 73.23974 | 81.5207 | 71.55436 | 15.19929 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5339068 285.2 7916910 422.9 7916910 422.9
Vcells 21428541 163.5 57645510 439.9 57374079 437.8
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001974 | 0.002463 | 0.0101218 | 0.009207 | 0.016290 | 0.033455 |
2 | sum(x == value) | 3.327507 | 3.421146 | 3.9162957 | 3.604121 | 4.058308 | 19.164505 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.000 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | sum(x == value) | 1685.667 | 1389.016 | 386.9173 | 391.4544 | 249.1288 | 572.8443 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5339131 285.2 7916910 422.9 7916910 422.9
Vcells 21428583 163.5 57645510 439.9 57430649 438.2
> stats <- microbenchmark(count = count(x, value), `sum(x == value)` = sum(x == value), unit = "ms")
Table: Benchmarking of count() and sum(x == value)() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 0.001941 | 0.0024535 | 0.013511 | 0.0037645 | 0.025913 | 0.031865 |
2 | sum(x == value) | 32.971714 | 33.0920835 | 37.258351 | 33.4237675 | 35.454502 | 66.968885 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | count | 1.00 | 1.0 | 1.000 | 1.000 | 1.000 | 1.000 |
2 | sum(x == value) | 16986.97 | 13487.7 | 2757.623 | 8878.674 | 1368.213 | 2101.644 |
Figure: Benchmarking of count() and sum(x == value)() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0-9000
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 23.11 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('count')
Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:34:41 (+0200 UTC). Powered by RSP.