This report benchmark the performance of colWeightedMedians() and rowWeightedMedians on subsetted computation.
Data
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "double")
Results
10x10 matrix
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334344 284.9 7916910 422.9 7916910 422.9
Vcells 10832800 82.7 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols,
+ na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows,
+ cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334550 284.9 7916910 422.9 7916910 422.9
Vcells 10833479 82.7 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows,
+ na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols,
+ rows], w = w[rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
0.052626 |
0.055492 |
0.0598032 |
0.0591955 |
0.0639175 |
0.086218 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
0.054190 |
0.057296 |
0.0610951 |
0.0607215 |
0.0636040 |
0.078173 |
2 |
colWeightedMedians(X, w, rows, cols) |
0.054722 |
0.057221 |
0.0661582 |
0.0607790 |
0.0654960 |
0.520724 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.00000 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
1.029719 |
1.032509 |
1.021602 |
1.025779 |
0.9950952 |
0.90669 |
2 |
colWeightedMedians(X, w, rows, cols) |
1.039828 |
1.031158 |
1.106266 |
1.026750 |
1.0246959 |
6.03962 |
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
0.055853 |
0.0590680 |
0.0625646 |
0.0623145 |
0.0657520 |
0.074729 |
1 |
rowWeightedMedians_X_w_S |
0.054368 |
0.0577385 |
0.0617549 |
0.0633800 |
0.0640265 |
0.076940 |
2 |
rowWeightedMedians(X, w, cols, rows) |
0.056337 |
0.0591865 |
0.0674016 |
0.0634800 |
0.0662600 |
0.444226 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
1.0000000 |
1.000000 |
1.0000000 |
1.000000 |
1.0000000 |
1.000000 |
1 |
rowWeightedMedians_X_w_S |
0.9734124 |
0.977492 |
0.9870577 |
1.017099 |
0.9737575 |
1.029587 |
2 |
rowWeightedMedians(X, w, cols, rows) |
1.0086656 |
1.002006 |
1.0773124 |
1.018703 |
1.0077260 |
5.944493 |
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x10 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
52.626 |
55.4920 |
59.80320 |
59.1955 |
63.9175 |
86.218 |
2 |
rowWeightedMedians_X_w_S |
54.368 |
57.7385 |
61.75488 |
63.3800 |
64.0265 |
76.940 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
1.0000000 |
2 |
rowWeightedMedians_X_w_S |
1.033101 |
1.040483 |
1.032635 |
1.07069 |
1.001705 |
0.8923891 |
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5333531 284.9 7916910 422.9 7916910 422.9
Vcells 10504819 80.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols,
+ na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows,
+ cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5333525 284.9 7916910 422.9 7916910 422.9
Vcells 10514902 80.3 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows,
+ na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols,
+ rows], w = w[rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
0.434137 |
0.4463780 |
0.5403734 |
0.4713315 |
0.5911655 |
1.070444 |
2 |
colWeightedMedians(X, w, rows, cols) |
0.447466 |
0.4619700 |
0.5517239 |
0.5006270 |
0.5818170 |
1.107663 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
0.440669 |
0.4654005 |
0.5546191 |
0.5054815 |
0.5816365 |
1.110276 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
2 |
colWeightedMedians(X, w, rows, cols) |
1.030702 |
1.034930 |
1.021005 |
1.062155 |
0.9841863 |
1.034770 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
1.015046 |
1.042615 |
1.026363 |
1.072454 |
0.9838810 |
1.037211 |
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
0.430554 |
0.4348235 |
0.4951498 |
0.4388405 |
0.5456995 |
0.750884 |
2 |
rowWeightedMedians(X, w, cols, rows) |
0.440696 |
0.4455005 |
0.4825449 |
0.4496595 |
0.4980810 |
0.704190 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
0.437534 |
0.4445915 |
0.4939047 |
0.4497360 |
0.4921610 |
0.860468 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
1.0000000 |
1.0000000 |
2 |
rowWeightedMedians(X, w, cols, rows) |
1.023556 |
1.024555 |
0.9745433 |
1.024654 |
0.9127386 |
0.9378146 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
1.016212 |
1.022464 |
0.9974855 |
1.024828 |
0.9018901 |
1.1459400 |
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x100 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowWeightedMedians_X_w_S |
430.554 |
434.8235 |
495.1498 |
438.8405 |
545.6995 |
750.884 |
1 |
colWeightedMedians_X_w_S |
434.137 |
446.3780 |
540.3734 |
471.3315 |
591.1655 |
1070.444 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colWeightedMedians_X_w_S |
1.008322 |
1.026573 |
1.091333 |
1.074038 |
1.083317 |
1.425578 |
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334287 284.9 7916910 422.9 7916910 422.9
Vcells 10510793 80.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols,
+ na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows,
+ cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334275 284.9 7916910 422.9 7916910 422.9
Vcells 10520866 80.3 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows,
+ na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols,
+ rows], w = w[rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
0.285904 |
0.2884800 |
0.3284488 |
0.2955405 |
0.3679635 |
0.555002 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
0.299357 |
0.3028875 |
0.3375220 |
0.3071975 |
0.3751100 |
0.446226 |
2 |
colWeightedMedians(X, w, rows, cols) |
0.300769 |
0.3049490 |
0.3497215 |
0.3093395 |
0.3873910 |
0.633478 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
1.047054 |
1.049943 |
1.027625 |
1.039443 |
1.019422 |
0.8040079 |
2 |
colWeightedMedians(X, w, rows, cols) |
1.051993 |
1.057089 |
1.064767 |
1.046691 |
1.052797 |
1.1413977 |
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
0.286450 |
0.2940310 |
0.3394324 |
0.3209085 |
0.3723010 |
0.492944 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
0.303695 |
0.3103895 |
0.3630336 |
0.3476785 |
0.3924645 |
0.547230 |
2 |
rowWeightedMedians(X, w, cols, rows) |
0.304607 |
0.3098190 |
0.3631793 |
0.3479245 |
0.3922800 |
0.634940 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
1.060202 |
1.055635 |
1.069531 |
1.083419 |
1.054159 |
1.110126 |
2 |
rowWeightedMedians(X, w, cols, rows) |
1.063386 |
1.053695 |
1.069961 |
1.084186 |
1.053664 |
1.288057 |
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x10 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
285.904 |
288.480 |
328.4488 |
295.5405 |
367.9635 |
555.002 |
2 |
rowWeightedMedians_X_w_S |
286.450 |
294.031 |
339.4324 |
320.9085 |
372.3010 |
492.944 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.00000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowWeightedMedians_X_w_S |
1.00191 |
1.019242 |
1.033441 |
1.085836 |
1.011788 |
0.8881842 |
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334493 284.9 7916910 422.9 7916910 422.9
Vcells 10510094 80.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols,
+ na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows,
+ cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334487 284.9 7916910 422.9 7916910 422.9
Vcells 10520177 80.3 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows,
+ na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols,
+ rows], w = w[rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
2.105473 |
2.268289 |
2.430364 |
2.317800 |
2.390839 |
8.856974 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
2.137962 |
2.283279 |
2.407698 |
2.335170 |
2.419733 |
3.559363 |
2 |
colWeightedMedians(X, w, rows, cols) |
2.125799 |
2.309067 |
2.517231 |
2.347761 |
2.425774 |
8.769117 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.0000000 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
1.015431 |
1.006608 |
0.9906738 |
1.007494 |
1.012085 |
0.4018712 |
2 |
colWeightedMedians(X, w, rows, cols) |
1.009654 |
1.017977 |
1.0357421 |
1.012927 |
1.014612 |
0.9900805 |
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
2.121931 |
2.233299 |
2.465462 |
2.321854 |
2.464652 |
8.613723 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
2.137454 |
2.259781 |
2.473130 |
2.333979 |
2.424936 |
8.783698 |
2 |
rowWeightedMedians(X, w, cols, rows) |
2.112333 |
2.248140 |
2.424102 |
2.335499 |
2.375852 |
8.750414 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
1.0000000 |
1.000000 |
1.0000000 |
1.000000 |
1.0000000 |
1.000000 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
1.0073155 |
1.011858 |
1.0031104 |
1.005222 |
0.9838856 |
1.019733 |
2 |
rowWeightedMedians(X, w, cols, rows) |
0.9954768 |
1.006646 |
0.9832243 |
1.005877 |
0.9639704 |
1.015869 |
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 10x1000 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
2.105473 |
2.268289 |
2.430364 |
2.317800 |
2.390839 |
8.856974 |
2 |
rowWeightedMedians_X_w_S |
2.121931 |
2.233299 |
2.465462 |
2.321854 |
2.464652 |
8.613723 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowWeightedMedians_X_w_S |
1.007817 |
0.9845741 |
1.014441 |
1.001749 |
1.030873 |
0.9725357 |
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334707 285.0 7916910 422.9 7916910 422.9
Vcells 10555068 80.6 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols,
+ na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows,
+ cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334695 285.0 7916910 422.9 7916910 422.9
Vcells 10655141 81.3 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows,
+ na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols,
+ rows], w = w[rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
4.126185 |
4.298798 |
4.468813 |
4.359743 |
4.464126 |
5.675724 |
2 |
colWeightedMedians(X, w, rows, cols) |
4.211187 |
4.397105 |
4.890707 |
4.463831 |
4.581053 |
19.973439 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
4.231171 |
4.395156 |
4.712517 |
4.474814 |
4.583891 |
19.211726 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colWeightedMedians(X, w, rows, cols) |
1.020601 |
1.022868 |
1.094408 |
1.023875 |
1.026193 |
3.519100 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
1.025444 |
1.022415 |
1.054534 |
1.026394 |
1.026828 |
3.384894 |
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
4.231641 |
4.399703 |
4.631424 |
4.461740 |
4.635045 |
6.997573 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
4.256076 |
4.479400 |
4.771082 |
4.530139 |
4.653082 |
19.360516 |
2 |
rowWeightedMedians(X, w, cols, rows) |
4.239604 |
4.451703 |
4.947578 |
4.550002 |
4.693646 |
21.368131 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
1.005774 |
1.018114 |
1.030154 |
1.015330 |
1.003891 |
2.766747 |
2 |
rowWeightedMedians(X, w, cols, rows) |
1.001882 |
1.011819 |
1.068263 |
1.019782 |
1.012643 |
3.053649 |
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 100x1000 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
4.126185 |
4.298798 |
4.468813 |
4.359743 |
4.464126 |
5.675724 |
2 |
rowWeightedMedians_X_w_S |
4.231641 |
4.399703 |
4.631424 |
4.461740 |
4.635045 |
6.997573 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowWeightedMedians_X_w_S |
1.025558 |
1.023473 |
1.036388 |
1.023395 |
1.038287 |
1.232895 |
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> w <- runif(nrow(X))
> w_S <- w[rows]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334913 285.0 7916910 422.9 7916910 422.9
Vcells 10557403 80.6 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colWeightedMedians_X_w_S = colWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `colWeightedMedians(X, w, rows, cols)` = colWeightedMedians(X, w = w, rows = rows, cols = cols,
+ na.rm = FALSE), `colWeightedMedians(X[rows, cols], w[rows])` = colWeightedMedians(X[rows,
+ cols], w = w[rows], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5334901 285.0 7916910 422.9 7916910 422.9
Vcells 10657476 81.4 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowWeightedMedians_X_w_S = rowWeightedMedians(X_S, w = w_S, na.rm = FALSE),
+ `rowWeightedMedians(X, w, cols, rows)` = rowWeightedMedians(X, w = w, rows = cols, cols = rows,
+ na.rm = FALSE), `rowWeightedMedians(X[cols, rows], w[rows])` = rowWeightedMedians(X[cols,
+ rows], w = w[rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
2.633460 |
2.727588 |
2.900070 |
2.792244 |
2.879844 |
4.390126 |
2 |
colWeightedMedians(X, w, rows, cols) |
2.745008 |
2.824676 |
3.107675 |
2.888164 |
2.921382 |
12.395477 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
2.750645 |
2.834135 |
2.966980 |
2.897008 |
2.933892 |
4.522327 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colWeightedMedians(X, w, rows, cols) |
1.042358 |
1.035595 |
1.071586 |
1.034353 |
1.014424 |
2.823490 |
3 |
colWeightedMedians(X[rows, cols], w[rows]) |
1.044498 |
1.039063 |
1.023072 |
1.037520 |
1.018768 |
1.030113 |
Table: Benchmarking of rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
2.663706 |
2.772612 |
2.986389 |
2.811904 |
2.910218 |
11.293295 |
2 |
rowWeightedMedians(X, w, cols, rows) |
2.779964 |
2.864292 |
3.134994 |
2.936345 |
3.064936 |
11.821283 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
2.768421 |
2.876955 |
3.035010 |
2.948023 |
3.041638 |
4.027716 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowWeightedMedians(X, w, cols, rows) |
1.043645 |
1.033066 |
1.049761 |
1.044255 |
1.053164 |
1.0467523 |
3 |
rowWeightedMedians(X[cols, rows], w[rows]) |
1.039312 |
1.037634 |
1.016281 |
1.048408 |
1.045158 |
0.3566467 |
Figure: Benchmarking of colWeightedMedians_X_w_S(), colWeightedMedians(X, w, rows, cols)() and colWeightedMedians(X[rows, cols], w[rows])() on 1000x100 data as well as rowWeightedMedians_X_w_S(), rowWeightedMedians(X, w, cols, rows)() and rowWeightedMedians(X[cols, rows], w[rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
2.633460 |
2.727588 |
2.900070 |
2.792244 |
2.879844 |
4.390126 |
2 |
rowWeightedMedians_X_w_S |
2.663706 |
2.772612 |
2.986389 |
2.811904 |
2.910218 |
11.293295 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colWeightedMedians_X_w_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowWeightedMedians_X_w_S |
1.011485 |
1.016507 |
1.029764 |
1.007041 |
1.010547 |
2.572431 |
Figure: Benchmarking of colWeightedMedians_X_w_S() and rowWeightedMedians_X_w_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 18.9 secs.
Reproducibility
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowWeightedMedians_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 22:32:30 (+0200 UTC). Powered by RSP.