colTabulates() and rowTabulates() benchmarks on subsetted computation
This report benchmark the performance of colTabulates() and rowTabulates() on subsetted computation.
Data
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "integer", range = c(-10, 10))
Results
10x10 matrix
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309434 283.6 7916910 422.9 7916910 422.9
Vcells 10540301 80.5 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates_X_S = colTabulates(X_S, na.rm = FALSE), `colTabulates(X, rows, cols)` = colTabulates(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colTabulates(X[rows, cols])` = colTabulates(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309717 283.6 7916910 422.9 7916910 422.9
Vcells 10541349 80.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates_X_S = rowTabulates(X_S, na.rm = FALSE), `rowTabulates(X, cols, rows)` = rowTabulates(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowTabulates(X[cols, rows])` = rowTabulates(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
3 |
colTabulates(X[rows, cols]) |
0.150281 |
0.1653295 |
0.1796339 |
0.1741140 |
0.187048 |
0.253773 |
1 |
colTabulates_X_S |
0.146889 |
0.1653320 |
0.1862859 |
0.1749945 |
0.194673 |
0.647950 |
2 |
colTabulates(X, rows, cols) |
0.150339 |
0.1660475 |
0.1836304 |
0.1767630 |
0.197752 |
0.241339 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
3 |
colTabulates(X[rows, cols]) |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1 |
colTabulates_X_S |
0.9774289 |
1.000015 |
1.037031 |
1.005057 |
1.040765 |
2.5532661 |
2 |
colTabulates(X, rows, cols) |
1.0003859 |
1.004343 |
1.022248 |
1.015214 |
1.057226 |
0.9510035 |
Table: Benchmarking of rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
3 |
rowTabulates(X[cols, rows]) |
0.141842 |
0.1508515 |
0.1665028 |
0.1619565 |
0.171552 |
0.218309 |
2 |
rowTabulates(X, cols, rows) |
0.141860 |
0.1513865 |
0.1741077 |
0.1639945 |
0.179348 |
0.641714 |
1 |
rowTabulates_X_S |
0.139307 |
0.1497235 |
0.1715243 |
0.1653250 |
0.190447 |
0.221781 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
3 |
rowTabulates(X[cols, rows]) |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates(X, cols, rows) |
1.000127 |
1.0035465 |
1.045674 |
1.012584 |
1.045444 |
2.939476 |
1 |
rowTabulates_X_S |
0.982128 |
0.9925224 |
1.030159 |
1.020799 |
1.110141 |
1.015904 |
Figure: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 10x10 data as well as rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowTabulates_X_S |
139.307 |
149.7235 |
171.5243 |
165.3250 |
190.447 |
221.781 |
1 |
colTabulates_X_S |
146.889 |
165.3320 |
186.2859 |
174.9945 |
194.673 |
647.950 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
1 |
colTabulates_X_S |
1.054427 |
1.104249 |
1.086061 |
1.058488 |
1.02219 |
2.921576 |
Figure: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5308760 283.6 7916910 422.9 7916910 422.9
Vcells 10210647 78.0 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates_X_S = colTabulates(X_S, na.rm = FALSE), `colTabulates(X, rows, cols)` = colTabulates(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colTabulates(X[rows, cols])` = colTabulates(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5308754 283.6 7916910 422.9 7916910 422.9
Vcells 10215730 78.0 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates_X_S = rowTabulates(X_S, na.rm = FALSE), `rowTabulates(X, cols, rows)` = rowTabulates(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowTabulates(X[cols, rows])` = rowTabulates(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
0.307639 |
0.3102545 |
0.3538999 |
0.322167 |
0.3870175 |
0.524295 |
3 |
colTabulates(X[rows, cols]) |
0.315670 |
0.3194630 |
0.3664192 |
0.326460 |
0.4035855 |
0.677059 |
2 |
colTabulates(X, rows, cols) |
0.316056 |
0.3197015 |
0.3617558 |
0.328848 |
0.3983450 |
0.565299 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
3 |
colTabulates(X[rows, cols]) |
1.026105 |
1.029680 |
1.035375 |
1.013325 |
1.042809 |
1.291370 |
2 |
colTabulates(X, rows, cols) |
1.027360 |
1.030449 |
1.022198 |
1.020738 |
1.029269 |
1.078208 |
Table: Benchmarking of rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
0.356096 |
0.3629345 |
0.4151751 |
0.3671960 |
0.456039 |
0.702722 |
2 |
rowTabulates(X, cols, rows) |
0.365645 |
0.3715305 |
0.4177823 |
0.3751515 |
0.437584 |
0.794211 |
3 |
rowTabulates(X[cols, rows]) |
0.363943 |
0.3707835 |
0.4126707 |
0.3759640 |
0.435015 |
0.619920 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
1.0000000 |
1.0000000 |
2 |
rowTabulates(X, cols, rows) |
1.026816 |
1.023685 |
1.0062798 |
1.021665 |
0.9595320 |
1.1301923 |
3 |
rowTabulates(X[cols, rows]) |
1.022036 |
1.021626 |
0.9939679 |
1.023878 |
0.9538987 |
0.8821696 |
Figure: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 100x100 data as well as rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
307.639 |
310.2545 |
353.8999 |
322.167 |
387.0175 |
524.295 |
2 |
rowTabulates_X_S |
356.096 |
362.9345 |
415.1751 |
367.196 |
456.0390 |
702.722 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates_X_S |
1.157512 |
1.169796 |
1.173143 |
1.139769 |
1.178342 |
1.340318 |
Figure: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309508 283.6 7916910 422.9 7916910 422.9
Vcells 10214715 78.0 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates_X_S = colTabulates(X_S, na.rm = FALSE), `colTabulates(X, rows, cols)` = colTabulates(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colTabulates(X[rows, cols])` = colTabulates(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309496 283.6 7916910 422.9 7916910 422.9
Vcells 10219788 78.0 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates_X_S = rowTabulates(X_S, na.rm = FALSE), `rowTabulates(X, cols, rows)` = rowTabulates(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowTabulates(X[cols, rows])` = rowTabulates(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
colTabulates(X, rows, cols) |
0.297316 |
0.3009685 |
0.3384937 |
0.3038785 |
0.3711730 |
0.510221 |
3 |
colTabulates(X[rows, cols]) |
0.297245 |
0.3014635 |
0.3396631 |
0.3055995 |
0.3749480 |
0.632409 |
1 |
colTabulates_X_S |
0.288750 |
0.2923220 |
0.3324583 |
0.3125580 |
0.3669625 |
0.483274 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
colTabulates(X, rows, cols) |
1.0000000 |
1.0000000 |
1.0000000 |
1.000000 |
1.0000000 |
1.0000000 |
3 |
colTabulates(X[rows, cols]) |
0.9997612 |
1.0016447 |
1.0034547 |
1.005663 |
1.0101705 |
1.2394805 |
1 |
colTabulates_X_S |
0.9711889 |
0.9712711 |
0.9821697 |
1.028562 |
0.9886562 |
0.9471856 |
Table: Benchmarking of rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
0.351603 |
0.355973 |
0.3964701 |
0.3597425 |
0.4121985 |
0.603988 |
3 |
rowTabulates(X[cols, rows]) |
0.361078 |
0.365708 |
0.4092195 |
0.3737970 |
0.4421335 |
0.740101 |
2 |
rowTabulates(X, cols, rows) |
0.360883 |
0.366581 |
0.4112318 |
0.3779340 |
0.4498420 |
0.604123 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
3 |
rowTabulates(X[cols, rows]) |
1.026948 |
1.027348 |
1.032157 |
1.039068 |
1.072623 |
1.225357 |
2 |
rowTabulates(X, cols, rows) |
1.026393 |
1.029800 |
1.037233 |
1.050568 |
1.091324 |
1.000223 |
Figure: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 1000x10 data as well as rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
288.750 |
292.322 |
332.4583 |
312.5580 |
366.9625 |
483.274 |
2 |
rowTabulates_X_S |
351.603 |
355.973 |
396.4701 |
359.7425 |
412.1985 |
603.988 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates_X_S |
1.217673 |
1.217743 |
1.192541 |
1.150962 |
1.123271 |
1.249784 |
Figure: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309713 283.6 7916910 422.9 7916910 422.9
Vcells 10215623 78.0 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates_X_S = colTabulates(X_S, na.rm = FALSE), `colTabulates(X, rows, cols)` = colTabulates(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colTabulates(X[rows, cols])` = colTabulates(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309701 283.6 7916910 422.9 7916910 422.9
Vcells 10220696 78.0 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates_X_S = rowTabulates(X_S, na.rm = FALSE), `rowTabulates(X, cols, rows)` = rowTabulates(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowTabulates(X[cols, rows])` = rowTabulates(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
colTabulates(X, rows, cols) |
0.370650 |
0.3817230 |
0.4278961 |
0.3962655 |
0.4416970 |
0.779126 |
1 |
colTabulates_X_S |
0.356538 |
0.3702745 |
0.4375368 |
0.4087925 |
0.4876355 |
0.755414 |
3 |
colTabulates(X[rows, cols]) |
0.369907 |
0.3894570 |
0.4410350 |
0.4158055 |
0.4752500 |
0.663778 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
colTabulates(X, rows, cols) |
1.0000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1 |
colTabulates_X_S |
0.9619263 |
0.9700084 |
1.022531 |
1.031613 |
1.104005 |
0.9695659 |
3 |
colTabulates(X[rows, cols]) |
0.9979954 |
1.0202608 |
1.030706 |
1.049310 |
1.075964 |
0.8519521 |
Table: Benchmarking of rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
0.380852 |
0.3903555 |
0.4295531 |
0.4136260 |
0.4515630 |
0.587730 |
2 |
rowTabulates(X, cols, rows) |
0.390755 |
0.4066595 |
0.4425441 |
0.4189230 |
0.4496990 |
0.922018 |
3 |
rowTabulates(X[cols, rows]) |
0.390353 |
0.4055215 |
0.4536265 |
0.4255615 |
0.4983025 |
0.728833 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
2 |
rowTabulates(X, cols, rows) |
1.026002 |
1.041767 |
1.030243 |
1.012806 |
0.9958721 |
1.568778 |
3 |
rowTabulates(X[cols, rows]) |
1.024947 |
1.038852 |
1.056043 |
1.028856 |
1.1035060 |
1.240081 |
Figure: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 10x1000 data as well as rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
356.538 |
370.2745 |
437.5369 |
408.7925 |
487.6355 |
755.414 |
2 |
rowTabulates_X_S |
380.852 |
390.3555 |
429.5531 |
413.6260 |
451.5630 |
587.730 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.0000000 |
2 |
rowTabulates_X_S |
1.068195 |
1.054233 |
0.981753 |
1.011824 |
0.9260257 |
0.7780237 |
Figure: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309923 283.6 7916910 422.9 7916910 422.9
Vcells 10238300 78.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates_X_S = colTabulates(X_S, na.rm = FALSE), `colTabulates(X, rows, cols)` = colTabulates(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colTabulates(X[rows, cols])` = colTabulates(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5309911 283.6 7916910 422.9 7916910 422.9
Vcells 10288373 78.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates_X_S = rowTabulates(X_S, na.rm = FALSE), `rowTabulates(X, cols, rows)` = rowTabulates(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowTabulates(X[cols, rows])` = rowTabulates(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.614644 |
1.670087 |
1.809777 |
1.739087 |
1.868170 |
2.792142 |
2 |
colTabulates(X, rows, cols) |
1.709986 |
1.735956 |
2.042918 |
1.793670 |
2.004110 |
9.707371 |
3 |
colTabulates(X[rows, cols]) |
1.690566 |
1.731372 |
1.880456 |
1.807530 |
1.983262 |
2.527533 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
colTabulates(X, rows, cols) |
1.059048 |
1.039441 |
1.128823 |
1.031386 |
1.072767 |
3.4766753 |
3 |
colTabulates(X[rows, cols]) |
1.047021 |
1.036696 |
1.039054 |
1.039355 |
1.061607 |
0.9052308 |
Table: Benchmarking of rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
2.154210 |
2.189722 |
2.387819 |
2.204312 |
2.278773 |
9.721865 |
2 |
rowTabulates(X, cols, rows) |
2.250677 |
2.261482 |
2.347641 |
2.301795 |
2.335865 |
3.481036 |
3 |
rowTabulates(X[cols, rows]) |
2.247985 |
2.261612 |
2.406939 |
2.308937 |
2.462567 |
3.282493 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowTabulates(X, cols, rows) |
1.044781 |
1.032771 |
0.9831739 |
1.044224 |
1.025054 |
0.3580626 |
3 |
rowTabulates(X[cols, rows]) |
1.043531 |
1.032831 |
1.0080076 |
1.047464 |
1.080655 |
0.3376403 |
Figure: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 100x1000 data as well as rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.614644 |
1.670087 |
1.809777 |
1.739087 |
1.868170 |
2.792142 |
2 |
rowTabulates_X_S |
2.154210 |
2.189722 |
2.387819 |
2.204312 |
2.278773 |
9.721865 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.00000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates_X_S |
1.33417 |
1.311143 |
1.319399 |
1.267511 |
1.219789 |
3.481866 |
Figure: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5310142 283.6 7916910 422.9 7916910 422.9
Vcells 10239135 78.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates_X_S = colTabulates(X_S, na.rm = FALSE), `colTabulates(X, rows, cols)` = colTabulates(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colTabulates(X[rows, cols])` = colTabulates(X[rows,
+ cols], na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5310124 283.6 7916910 422.9 7916910 422.9
Vcells 10289198 78.6 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates_X_S = rowTabulates(X_S, na.rm = FALSE), `rowTabulates(X, cols, rows)` = rowTabulates(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowTabulates(X[cols, rows])` = rowTabulates(X[cols,
+ rows], na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.461543 |
1.495653 |
1.590567 |
1.521579 |
1.592432 |
2.555754 |
3 |
colTabulates(X[rows, cols]) |
1.523949 |
1.557709 |
1.644528 |
1.586893 |
1.639164 |
2.559557 |
2 |
colTabulates(X, rows, cols) |
1.539389 |
1.560374 |
1.749221 |
1.591442 |
1.769149 |
8.832614 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
3 |
colTabulates(X[rows, cols]) |
1.042699 |
1.041491 |
1.033926 |
1.042925 |
1.029346 |
1.001488 |
2 |
colTabulates(X, rows, cols) |
1.053263 |
1.043273 |
1.099747 |
1.045915 |
1.110973 |
3.455972 |
Table: Benchmarking of rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
2.219772 |
2.260161 |
2.401932 |
2.300524 |
2.312773 |
8.983898 |
2 |
rowTabulates(X, cols, rows) |
2.310645 |
2.325799 |
2.437679 |
2.370543 |
2.398989 |
3.921769 |
3 |
rowTabulates(X[cols, rows]) |
2.311351 |
2.326789 |
2.413981 |
2.373002 |
2.388675 |
3.713551 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowTabulates(X, cols, rows) |
1.040938 |
1.029041 |
1.014882 |
1.030436 |
1.037278 |
0.4365331 |
3 |
rowTabulates(X[cols, rows]) |
1.041256 |
1.029479 |
1.005016 |
1.031505 |
1.032819 |
0.4133563 |
Figure: Benchmarking of colTabulates_X_S(), colTabulates(X, rows, cols)() and colTabulates(X[rows, cols])() on 1000x100 data as well as rowTabulates_X_S(), rowTabulates(X, cols, rows)() and rowTabulates(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.461543 |
1.495653 |
1.590567 |
1.521579 |
1.592432 |
2.555754 |
2 |
rowTabulates_X_S |
2.219772 |
2.260161 |
2.401932 |
2.300524 |
2.312773 |
8.983898 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates_X_S |
1.518787 |
1.511152 |
1.510111 |
1.511932 |
1.452352 |
3.515165 |
Figure: Benchmarking of colTabulates_X_S() and rowTabulates_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 15.24 secs.
Reproducibility
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowTabulates_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 22:30:18 (+0200 UTC). Powered by RSP.