colTabulates() and rowTabulates() benchmarks
This report benchmark the performance of colTabulates() and rowTabulates() against alternative methods.
Alternative methods
Data
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "integer", range = c(-10, 10))
Results
10x10 matrix
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5312972 283.8 7916910 422.9 7916910 422.9
Vcells 10426587 79.6 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5312566 283.8 7916910 422.9 7916910 422.9
Vcells 10425459 79.6 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
0.19669 |
0.2165795 |
0.2348012 |
0.2304595 |
0.2499735 |
0.40226 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Table: Benchmarking of rowTabulates() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
0.189191 |
0.204201 |
0.2198739 |
0.2167605 |
0.231946 |
0.401605 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Figure: Benchmarking of colTabulates() on 10x10 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates() and rowTabulates() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowTabulates |
189.191 |
204.2010 |
219.8739 |
216.7605 |
231.9460 |
401.605 |
1 |
colTabulates |
196.690 |
216.5795 |
234.8012 |
230.4595 |
249.9735 |
402.260 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowTabulates |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colTabulates |
1.039637 |
1.060619 |
1.06789 |
1.063199 |
1.077723 |
1.001631 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 matrix
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5311073 283.7 7916910 422.9 7916910 422.9
Vcells 10231012 78.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5311067 283.7 7916910 422.9 7916910 422.9
Vcells 10236055 78.1 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
0.48234 |
0.5168785 |
0.5979108 |
0.5827735 |
0.6529605 |
0.903825 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Table: Benchmarking of rowTabulates() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
0.58075 |
0.6050025 |
0.7095906 |
0.689075 |
0.761424 |
1.098079 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Figure: Benchmarking of colTabulates() on 100x100 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates() and rowTabulates() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
482.34 |
516.8785 |
597.9108 |
582.7735 |
652.9605 |
903.825 |
2 |
rowTabulates |
580.75 |
605.0025 |
709.5906 |
689.0750 |
761.4240 |
1098.079 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
2 |
rowTabulates |
1.204026 |
1.170493 |
1.186783 |
1.182406 |
1.16611 |
1.214924 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 matrix
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5311783 283.7 7916910 422.9 7916910 422.9
Vcells 10234297 78.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5311777 283.7 7916910 422.9 7916910 422.9
Vcells 10239340 78.2 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
0.455727 |
0.4966905 |
0.5633653 |
0.5477525 |
0.6110225 |
0.882606 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Table: Benchmarking of rowTabulates() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
0.572059 |
0.6382925 |
0.7512468 |
0.71464 |
0.825404 |
1.202477 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Figure: Benchmarking of colTabulates() on 1000x10 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates() and rowTabulates() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
455.727 |
496.6905 |
563.3653 |
547.7525 |
611.0225 |
882.606 |
2 |
rowTabulates |
572.059 |
638.2925 |
751.2468 |
714.6400 |
825.4040 |
1202.477 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates |
1.255267 |
1.285091 |
1.333499 |
1.304677 |
1.350857 |
1.362416 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 matrix
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5311954 283.7 7916910 422.9 7916910 422.9
Vcells 10234877 78.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5311948 283.7 7916910 422.9 7916910 422.9
Vcells 10239920 78.2 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
0.67164 |
0.70546 |
0.790456 |
0.734978 |
0.8896275 |
1.354405 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Table: Benchmarking of rowTabulates() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
0.621013 |
0.6341315 |
0.7509423 |
0.726829 |
0.8070165 |
1.167277 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Figure: Benchmarking of colTabulates() on 10x1000 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates() and rowTabulates() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowTabulates |
621.013 |
634.1315 |
750.9423 |
726.829 |
807.0165 |
1167.277 |
1 |
colTabulates |
671.640 |
705.4600 |
790.4560 |
734.978 |
889.6275 |
1354.405 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowTabulates |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colTabulates |
1.081523 |
1.112482 |
1.052619 |
1.011212 |
1.102366 |
1.160312 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 matrix
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5312125 283.7 7916910 422.9 7916910 422.9
Vcells 10235291 78.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5312119 283.7 7916910 422.9 7916910 422.9
Vcells 10285334 78.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
3.026318 |
3.303526 |
3.67743 |
3.554111 |
3.846069 |
10.60402 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Table: Benchmarking of rowTabulates() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
4.224572 |
4.367992 |
4.879611 |
4.714155 |
4.854189 |
15.14541 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Figure: Benchmarking of colTabulates() on 100x1000 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates() and rowTabulates() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
3.026318 |
3.303526 |
3.677430 |
3.554111 |
3.846069 |
10.60402 |
2 |
rowTabulates |
4.224572 |
4.367992 |
4.879611 |
4.714155 |
4.854189 |
15.14541 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowTabulates |
1.395944 |
1.322221 |
1.326908 |
1.326395 |
1.262117 |
1.428271 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 matrix
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5312296 283.8 7916910 422.9 7916910 422.9
Vcells 10235764 78.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5312290 283.8 7916910 422.9 7916910 422.9
Vcells 10285807 78.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
2.946093 |
3.29304 |
3.639855 |
3.408883 |
3.649589 |
13.79837 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Table: Benchmarking of rowTabulates() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
4.31966 |
4.392578 |
4.865569 |
4.804507 |
4.917851 |
11.91221 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowTabulates |
1 |
1 |
1 |
1 |
1 |
1 |
Figure: Benchmarking of colTabulates() on 1000x100 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colTabulates() and rowTabulates() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
2.946093 |
3.293040 |
3.639855 |
3.408883 |
3.649589 |
13.79837 |
2 |
rowTabulates |
4.319660 |
4.392578 |
4.865569 |
4.804507 |
4.917851 |
11.91221 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colTabulates |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowTabulates |
1.466233 |
1.333898 |
1.336748 |
1.409408 |
1.347508 |
0.8633057 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 14.09 secs.
Reproducibility
To reproduce this report, do:
html <- matrixStats:::benchmark('colTabulates')
Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:30:34 (+0200 UTC). Powered by RSP.