This report benchmark the performance of colQuantiles() and rowQuantiles() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "double")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5291916 282.7 7916910 422.9 7916910 422.9
Vcells 10501223 80.2 33191153 253.3 53339345 407.0
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280058 282.0 7916910 422.9 7916910 422.9
Vcells 10461111 79.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | colQuantiles(X[rows, cols]) | 0.193864 | 0.2191920 | 0.2395020 | 0.2338630 | 0.250885 | 0.325129 |
| 1 | colQuantiles_X_S | 0.191803 | 0.2195265 | 0.2481782 | 0.2345925 | 0.259328 | 1.006207 |
| 2 | colQuantiles(X, rows, cols) | 0.198249 | 0.2212015 | 0.2476609 | 0.2365175 | 0.268017 | 0.373556 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | colQuantiles(X[rows, cols]) | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | colQuantiles_X_S | 0.9893688 | 1.001526 | 1.036226 | 1.003119 | 1.033653 | 3.094793 |
| 2 | colQuantiles(X, rows, cols) | 1.0226189 | 1.009168 | 1.034066 | 1.011351 | 1.068286 | 1.148947 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | rowQuantiles(X[cols, rows]) | 0.190332 | 0.2057045 | 0.2267560 | 0.2148715 | 0.2395465 | 0.401357 |
| 1 | rowQuantiles_X_S | 0.187668 | 0.2024100 | 0.2304964 | 0.2232495 | 0.2462815 | 0.376155 |
| 2 | rowQuantiles(X, cols, rows) | 0.190403 | 0.1996565 | 0.2419617 | 0.2276835 | 0.2496985 | 0.889379 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | rowQuantiles(X[cols, rows]) | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | rowQuantiles_X_S | 0.9860034 | 0.9839843 | 1.016495 | 1.038991 | 1.028116 | 0.937208 |
| 2 | rowQuantiles(X, cols, rows) | 1.0003730 | 0.9705986 | 1.067057 | 1.059626 | 1.042380 | 2.215930 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x10 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles_X_S | 187.668 | 202.4100 | 230.4964 | 223.2495 | 246.2815 | 376.155 |
| 1 | colQuantiles_X_S | 191.803 | 219.5265 | 248.1782 | 234.5925 | 259.3280 | 1006.207 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
| 1 | colQuantiles_X_S | 1.022034 | 1.084564 | 1.076712 | 1.050809 | 1.052974 | 2.67498 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5279660 282.0 7916910 422.9 7916910 422.9
Vcells 10134066 77.4 33191153 253.3 53339345 407.0
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5279648 282.0 7916910 422.9 7916910 422.9
Vcells 10144139 77.4 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.225778 | 1.252869 | 1.354780 | 1.286105 | 1.353386 | 2.311531 |
| 2 | colQuantiles(X, rows, cols) | 1.245639 | 1.269805 | 1.376652 | 1.304566 | 1.387719 | 2.182813 |
| 3 | colQuantiles(X[rows, cols]) | 1.244523 | 1.264433 | 1.471976 | 1.311001 | 1.435142 | 10.505936 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | colQuantiles(X, rows, cols) | 1.016203 | 1.013517 | 1.016144 | 1.014354 | 1.025369 | 0.9443148 |
| 3 | colQuantiles(X[rows, cols]) | 1.015292 | 1.009230 | 1.086506 | 1.019358 | 1.060408 | 4.5450119 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.255388 | 1.272221 | 1.379842 | 1.289094 | 1.372680 | 2.192171 |
| 3 | rowQuantiles(X[cols, rows]) | 1.268772 | 1.281665 | 1.369053 | 1.296639 | 1.364815 | 2.194366 |
| 2 | rowQuantiles(X, cols, rows) | 1.265596 | 1.282952 | 1.477202 | 1.300990 | 1.368350 | 10.359479 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 |
| 3 | rowQuantiles(X[cols, rows]) | 1.010661 | 1.007423 | 0.9921812 | 1.005853 | 0.9942700 | 1.001001 |
| 2 | rowQuantiles(X, cols, rows) | 1.008131 | 1.008434 | 1.0705588 | 1.009229 | 0.9968452 | 4.725671 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x100 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.225778 | 1.252869 | 1.354780 | 1.286105 | 1.353386 | 2.311531 |
| 2 | rowQuantiles_X_S | 1.255388 | 1.272221 | 1.379842 | 1.289094 | 1.372680 | 2.192171 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowQuantiles_X_S | 1.024156 | 1.015446 | 1.018499 | 1.002324 | 1.014256 | 0.9483632 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280409 282.1 7916910 422.9 7916910 422.9
Vcells 10138126 77.4 33191153 253.3 53339345 407.0
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280391 282.1 7916910 422.9 7916910 422.9
Vcells 10148189 77.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 0.370728 | 0.3727030 | 0.4200224 | 0.381484 | 0.4541030 | 0.617224 |
| 3 | colQuantiles(X[rows, cols]) | 0.382117 | 0.3861615 | 0.4301175 | 0.390001 | 0.4528365 | 0.825006 |
| 2 | colQuantiles(X, rows, cols) | 0.381225 | 0.3864250 | 0.4304690 | 0.390269 | 0.4602770 | 0.692628 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 3 | colQuantiles(X[rows, cols]) | 1.030721 | 1.036110 | 1.024035 | 1.022326 | 0.997211 | 1.336639 |
| 2 | colQuantiles(X, rows, cols) | 1.028315 | 1.036817 | 1.024872 | 1.023028 | 1.013596 | 1.122166 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 0.385827 | 0.388216 | 0.4227291 | 0.3912555 | 0.4255555 | 0.616402 |
| 3 | rowQuantiles(X[cols, rows]) | 0.399713 | 0.404013 | 0.4412166 | 0.4061035 | 0.4605050 | 0.817110 |
| 2 | rowQuantiles(X, cols, rows) | 0.402190 | 0.404894 | 0.4423714 | 0.4122980 | 0.4760700 | 0.621445 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 3 | rowQuantiles(X[cols, rows]) | 1.03599 | 1.040691 | 1.043734 | 1.037950 | 1.082127 | 1.325612 |
| 2 | rowQuantiles(X, cols, rows) | 1.04241 | 1.042961 | 1.046465 | 1.053782 | 1.118702 | 1.008181 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x10 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 370.728 | 372.703 | 420.0224 | 381.4840 | 454.1030 | 617.224 |
| 2 | rowQuantiles_X_S | 385.827 | 388.216 | 422.7291 | 391.2555 | 425.5555 | 616.402 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 2 | rowQuantiles_X_S | 1.040728 | 1.041623 | 1.006444 | 1.025614 | 0.9371343 | 0.9986682 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280608 282.1 7916910 422.9 7916910 422.9
Vcells 10139102 77.4 33191153 253.3 53339345 407.0
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280596 282.1 7916910 422.9 7916910 422.9
Vcells 10149175 77.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colQuantiles(X, rows, cols) | 9.311982 | 9.526577 | 10.76101 | 9.882511 | 10.57142 | 18.86934 |
| 3 | colQuantiles(X[rows, cols]) | 9.336797 | 9.664976 | 10.59511 | 9.965283 | 10.35032 | 17.60338 |
| 1 | colQuantiles_X_S | 9.322680 | 9.623390 | 10.29404 | 10.035808 | 10.43551 | 16.82942 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | colQuantiles(X, rows, cols) | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 3 | colQuantiles(X[rows, cols]) | 1.002665 | 1.014528 | 0.9845829 | 1.008376 | 0.9790849 | 0.9329090 |
| 1 | colQuantiles_X_S | 1.001149 | 1.010162 | 0.9566059 | 1.015512 | 0.9871438 | 0.8918923 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | rowQuantiles(X[cols, rows]) | 9.318816 | 9.671371 | 10.38362 | 9.922601 | 10.47725 | 18.05593 |
| 2 | rowQuantiles(X, cols, rows) | 9.418175 | 9.712003 | 11.03026 | 10.020728 | 10.98179 | 24.69222 |
| 1 | rowQuantiles_X_S | 9.355191 | 9.644142 | 10.40783 | 10.024606 | 10.32139 | 16.76068 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 3 | rowQuantiles(X[cols, rows]) | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 2 | rowQuantiles(X, cols, rows) | 1.010662 | 1.0042013 | 1.062275 | 1.009889 | 1.0481553 | 1.3675403 |
| 1 | rowQuantiles_X_S | 1.003903 | 0.9971846 | 1.002331 | 1.010280 | 0.9851235 | 0.9282643 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 10x1000 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles_X_S | 9.355191 | 9.644142 | 10.40783 | 10.02461 | 10.32139 | 16.76068 |
| 1 | colQuantiles_X_S | 9.322680 | 9.623390 | 10.29404 | 10.03581 | 10.43551 | 16.82942 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles_X_S | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | colQuantiles_X_S | 0.9965248 | 0.9978482 | 0.9890675 | 1.001118 | 1.011057 | 1.004102 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280818 282.1 7916910 422.9 7916910 422.9
Vcells 10183847 77.7 33191153 253.3 53339345 407.0
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5280806 282.1 7916910 422.9 7916910 422.9
Vcells 10283920 78.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 11.52600 | 12.38966 | 14.61118 | 13.30258 | 14.56454 | 38.26557 |
| 3 | colQuantiles(X[rows, cols]) | 11.69649 | 12.47478 | 14.41368 | 13.47034 | 14.54926 | 26.50288 |
| 2 | colQuantiles(X, rows, cols) | 11.78100 | 12.46030 | 15.42942 | 13.92336 | 15.77830 | 28.62961 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 3 | colQuantiles(X[rows, cols]) | 1.014791 | 1.006870 | 0.9864831 | 1.012611 | 0.9989507 | 0.6926037 |
| 2 | colQuantiles(X, rows, cols) | 1.022124 | 1.005702 | 1.0560009 | 1.046666 | 1.0833364 | 0.7481819 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles(X, cols, rows) | 12.36452 | 13.40608 | 14.51832 | 13.71598 | 14.47456 | 30.05745 |
| 1 | rowQuantiles_X_S | 12.16054 | 13.33660 | 14.59470 | 13.80858 | 15.02680 | 24.57460 |
| 3 | rowQuantiles(X[cols, rows]) | 12.19137 | 13.44041 | 14.51761 | 13.81128 | 14.67734 | 26.34513 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowQuantiles(X, cols, rows) | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 1 | rowQuantiles_X_S | 0.9835027 | 0.9948169 | 1.0052609 | 1.006751 | 1.038153 | 0.8175878 |
| 3 | rowQuantiles(X[cols, rows]) | 0.9859963 | 1.0025601 | 0.9999514 | 1.006948 | 1.014010 | 0.8764925 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 100x1000 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 11.52600 | 12.38966 | 14.61118 | 13.30258 | 14.56454 | 38.26557 |
| 2 | rowQuantiles_X_S | 12.16054 | 13.33660 | 14.59470 | 13.80858 | 15.02680 | 24.57460 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.00000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowQuantiles_X_S | 1.055052 | 1.07643 | 0.9988718 | 1.038038 | 1.031739 | 0.6422119 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5281031 282.1 7916910 422.9 7916910 422.9
Vcells 10184677 77.8 33191153 253.3 53339345 407.0
> probs <- seq(from = 0, to = 1, by = 0.25)
> colStats <- microbenchmark(colQuantiles_X_S = colQuantiles(X_S, probs = probs, na.rm = FALSE), `colQuantiles(X, rows, cols)` = colQuantiles(X,
+ rows = rows, cols = cols, probs = probs, na.rm = FALSE), `colQuantiles(X[rows, cols])` = colQuantiles(X[rows,
+ cols], probs = probs, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5281019 282.1 7916910 422.9 7916910 422.9
Vcells 10284750 78.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowQuantiles_X_S = rowQuantiles(X_S, probs = probs, na.rm = FALSE), `rowQuantiles(X, cols, rows)` = rowQuantiles(X,
+ rows = cols, cols = rows, probs = probs, na.rm = FALSE), `rowQuantiles(X[cols, rows])` = rowQuantiles(X[cols,
+ rows], probs = probs, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 2.880728 | 3.120188 | 3.413697 | 3.210253 | 3.330167 | 13.560352 |
| 3 | colQuantiles(X[rows, cols]) | 3.061107 | 3.220135 | 3.391236 | 3.334631 | 3.465556 | 4.785324 |
| 2 | colQuantiles(X, rows, cols) | 3.096268 | 3.252244 | 3.522540 | 3.346129 | 3.467803 | 13.800664 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 3 | colQuantiles(X[rows, cols]) | 1.062616 | 1.032032 | 0.9934202 | 1.038744 | 1.040655 | 0.3528908 |
| 2 | colQuantiles(X, rows, cols) | 1.074821 | 1.042323 | 1.0318841 | 1.042326 | 1.041330 | 1.0177217 |
Table: Benchmarking of rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 3.090674 | 3.472739 | 3.580201 | 3.557223 | 3.642758 | 4.549436 |
| 3 | rowQuantiles(X[cols, rows]) | 3.337567 | 3.637268 | 3.807218 | 3.754910 | 3.893598 | 6.240238 |
| 2 | rowQuantiles(X, cols, rows) | 3.339166 | 3.652345 | 4.036156 | 3.765739 | 3.932219 | 15.623647 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowQuantiles_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 3 | rowQuantiles(X[cols, rows]) | 1.079883 | 1.047378 | 1.063409 | 1.055573 | 1.068860 | 1.371651 |
| 2 | rowQuantiles(X, cols, rows) | 1.080401 | 1.051719 | 1.127355 | 1.058618 | 1.079462 | 3.434194 |
Figure: Benchmarking of colQuantiles_X_S(), colQuantiles(X, rows, cols)() and colQuantiles(X[rows, cols])() on 1000x100 data as well as rowQuantiles_X_S(), rowQuantiles(X, cols, rows)() and rowQuantiles(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 2.880728 | 3.120188 | 3.413697 | 3.210253 | 3.330167 | 13.560352 |
| 2 | rowQuantiles_X_S | 3.090674 | 3.472739 | 3.580201 | 3.557223 | 3.642758 | 4.549436 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colQuantiles_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowQuantiles_X_S | 1.072879 | 1.11299 | 1.048775 | 1.108082 | 1.093867 | 0.3354954 |
Figure: Benchmarking of colQuantiles_X_S() and rowQuantiles_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 30.22 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowQuantiles_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 22:25:37 (+0200 UTC). Powered by RSP.