This report benchmark the performance of colMedians() and rowMedians() against alternative methods.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252365 280.6 7916910 422.9 7916910 422.9
Vcells 10194931 77.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252172 280.5 7916910 422.9 7916910 422.9
Vcells 10194651 77.8 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.002242 | 0.0028040 | 0.0046619 | 0.0041435 | 0.0053185 | 0.017579 |
| 2 | apply+median | 0.301536 | 0.3285055 | 0.3668008 | 0.3471615 | 0.3814220 | 0.597683 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.0000 | 1.000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 |
| 2 | apply+median | 134.4942 | 117.156 | 78.67969 | 83.7846 | 71.71609 | 33.99983 |
Table: Benchmarking of rowMedians() and apply+median() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.002414 | 0.0034080 | 0.0056612 | 0.0049215 | 0.0065285 | 0.017593 |
| 2 | apply+median | 0.311920 | 0.3353535 | 0.4024843 | 0.3581320 | 0.4088450 | 0.694812 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 129.2129 | 98.40185 | 71.09523 | 72.76887 | 62.62465 | 39.49366 |
Figure: Benchmarking of colMedians() and apply+median() on integer+10x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 2.242 | 2.804 | 4.66195 | 4.1435 | 5.3185 | 17.579 |
| 2 | rowMedians | 2.414 | 3.408 | 5.66120 | 4.9215 | 6.5285 | 17.593 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowMedians | 1.076717 | 1.215407 | 1.214342 | 1.187764 | 1.227508 | 1.000796 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5250734 280.5 7916910 422.9 7916910 422.9
Vcells 9811143 74.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5250728 280.5 7916910 422.9 7916910 422.9
Vcells 9816186 74.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.122332 | 0.132504 | 0.1460149 | 0.1434325 | 0.153560 | 0.280636 |
| 2 | apply+median | 2.631018 | 2.828682 | 3.2377973 | 3.0835700 | 3.355971 | 11.141453 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 21.50719 | 21.3479 | 22.17443 | 21.49841 | 21.85446 | 39.70073 |
Table: Benchmarking of rowMedians() and apply+median() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.122275 | 0.125206 | 0.1336632 | 0.1298365 | 0.1347545 | 0.188559 |
| 2 | apply+median | 2.662727 | 2.726279 | 3.0154816 | 2.8214735 | 3.0111140 | 12.106425 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 21.77654 | 21.77435 | 22.5603 | 21.73097 | 22.34518 | 64.20497 |
Figure: Benchmarking of colMedians() and apply+median() on integer+100x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMedians | 122.275 | 125.206 | 133.6632 | 129.8365 | 134.7545 | 188.559 |
| 1 | colMedians | 122.332 | 132.504 | 146.0149 | 143.4325 | 153.5600 | 280.636 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMedians | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
| 1 | colMedians | 1.000466 | 1.058288 | 1.09241 | 1.104716 | 1.139554 | 1.488319 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5251465 280.5 7916910 422.9 7916910 422.9
Vcells 9814650 74.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5251459 280.5 7916910 422.9 7916910 422.9
Vcells 9819693 75.0 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.109616 | 0.116921 | 0.1339929 | 0.1326660 | 0.143601 | 0.206983 |
| 2 | apply+median | 0.465915 | 0.496989 | 0.5680558 | 0.5575435 | 0.618175 | 0.923000 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 |
| 2 | apply+median | 4.250429 | 4.250639 | 4.239446 | 4.20261 | 4.30481 | 4.459303 |
Table: Benchmarking of rowMedians() and apply+median() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.111902 | 0.125378 | 0.1417642 | 0.140505 | 0.1542630 | 0.208260 |
| 2 | apply+median | 0.466662 | 0.521155 | 0.5982859 | 0.588065 | 0.6497965 | 0.937122 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
| 2 | apply+median | 4.170274 | 4.15667 | 4.220288 | 4.185367 | 4.212264 | 4.49977 |
Figure: Benchmarking of colMedians() and apply+median() on integer+1000x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 109.616 | 116.921 | 133.9929 | 132.666 | 143.601 | 206.983 |
| 2 | rowMedians | 111.902 | 125.378 | 141.7643 | 140.505 | 154.263 | 208.260 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
| 2 | rowMedians | 1.020855 | 1.072331 | 1.057998 | 1.059088 | 1.074247 | 1.00617 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5251653 280.5 7916910 422.9 7916910 422.9
Vcells 9815325 74.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5251647 280.5 7916910 422.9 7916910 422.9
Vcells 9820368 75.0 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.131982 | 0.1396325 | 0.159328 | 0.1586865 | 0.164361 | 0.651198 |
| 2 | apply+median | 24.277239 | 24.8847200 | 26.678439 | 25.8006730 | 26.610819 | 37.838270 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.0000 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.00000 |
| 2 | apply+median | 183.9436 | 178.2158 | 167.4435 | 162.589 | 161.9047 | 58.10563 |
Table: Benchmarking of rowMedians() and apply+median() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.132675 | 0.1409135 | 0.1565327 | 0.1614335 | 0.1688645 | 0.198457 |
| 2 | apply+median | 24.261659 | 25.1337500 | 26.6236012 | 25.6448825 | 26.3032430 | 34.410864 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.0000 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.000 |
| 2 | apply+median | 182.8653 | 178.363 | 170.0833 | 158.8573 | 155.7654 | 173.392 |
Figure: Benchmarking of colMedians() and apply+median() on integer+10x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 131.982 | 139.6325 | 159.3280 | 158.6865 | 164.3610 | 651.198 |
| 2 | rowMedians | 132.675 | 140.9135 | 156.5327 | 161.4335 | 168.8645 | 198.457 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000 | 1.0000000 |
| 2 | rowMedians | 1.005251 | 1.009174 | 0.9824554 | 1.017311 | 1.0274 | 0.3047568 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5251834 280.5 7916910 422.9 7916910 422.9
Vcells 9815806 74.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5251828 280.5 7916910 422.9 7916910 422.9
Vcells 9865849 75.3 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.211458 | 1.250171 | 1.296478 | 1.288948 | 1.316439 | 1.506328 |
| 2 | apply+median | 26.522826 | 27.794670 | 33.481847 | 28.772193 | 29.446193 | 394.031374 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000 |
| 2 | apply+median | 21.89331 | 22.23269 | 25.82524 | 22.32223 | 22.36807 | 261.584 |
Table: Benchmarking of rowMedians() and apply+median() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.221957 | 1.288993 | 1.34172 | 1.339344 | 1.371976 | 1.596619 |
| 2 | apply+median | 26.951488 | 28.553535 | 30.57973 | 29.152181 | 29.917817 | 43.257642 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 22.056 | 22.15181 | 22.79143 | 21.76602 | 21.80638 | 27.09328 |
Figure: Benchmarking of colMedians() and apply+median() on integer+100x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.211458 | 1.250171 | 1.296478 | 1.288948 | 1.316439 | 1.506328 |
| 2 | rowMedians | 1.221957 | 1.288993 | 1.341720 | 1.339344 | 1.371976 | 1.596619 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowMedians | 1.008666 | 1.031054 | 1.034896 | 1.039098 | 1.042187 | 1.059941 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252030 280.5 7916910 422.9 7916910 422.9
Vcells 9816385 74.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252024 280.5 7916910 422.9 7916910 422.9
Vcells 9866428 75.3 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.060225 | 1.116370 | 1.176325 | 1.125428 | 1.163722 | 1.755365 |
| 2 | apply+median | 4.404879 | 4.618464 | 5.186349 | 4.710299 | 4.974653 | 15.663975 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | apply+median | 4.154664 | 4.137035 | 4.408942 | 4.185338 | 4.274776 | 8.923486 |
Table: Benchmarking of rowMedians() and apply+median() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.075615 | 1.086423 | 1.146017 | 1.136283 | 1.157306 | 1.512098 |
| 2 | apply+median | 4.367497 | 4.561608 | 4.863605 | 4.663398 | 4.738879 | 14.860419 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | apply+median | 4.060465 | 4.198742 | 4.243921 | 4.104083 | 4.094752 | 9.827682 |
Figure: Benchmarking of colMedians() and apply+median() on integer+1000x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.060225 | 1.116370 | 1.176325 | 1.125428 | 1.163722 | 1.755365 |
| 2 | rowMedians | 1.075615 | 1.086423 | 1.146017 | 1.136283 | 1.157306 | 1.512098 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
| 2 | rowMedians | 1.014516 | 0.9731738 | 0.9742349 | 1.009644 | 0.9944858 | 0.8614151 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252236 280.5 7916910 422.9 7916910 422.9
Vcells 9932799 75.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252215 280.5 7916910 422.9 7916910 422.9
Vcells 9932917 75.8 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.003102 | 0.0037710 | 0.0052201 | 0.0047445 | 0.006130 | 0.019869 |
| 2 | apply+median | 0.307751 | 0.3289145 | 0.3585106 | 0.3435010 | 0.375892 | 0.648243 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 99.21051 | 87.22209 | 68.67874 | 72.39983 | 61.32007 | 32.62585 |
Table: Benchmarking of rowMedians() and apply+median() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.003381 | 0.0042770 | 0.0058312 | 0.0059115 | 0.0066925 | 0.019572 |
| 2 | apply+median | 0.325495 | 0.3390405 | 0.3764986 | 0.3631345 | 0.4141270 | 0.617893 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 96.27181 | 79.27063 | 64.56568 | 61.42849 | 61.87927 | 31.57025 |
Figure: Benchmarking of colMedians() and apply+median() on double+10x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 3.102 | 3.771 | 5.22011 | 4.7445 | 6.1300 | 19.869 |
| 2 | rowMedians | 3.381 | 4.277 | 5.83125 | 5.9115 | 6.6925 | 19.572 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowMedians | 1.089942 | 1.134182 | 1.117074 | 1.245969 | 1.091762 | 0.9850521 |
Figure: Benchmarking of colMedians() and rowMedians() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252408 280.6 7916910 422.9 7916910 422.9
Vcells 9932899 75.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252402 280.6 7916910 422.9 7916910 422.9
Vcells 9942942 75.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.182377 | 0.1866275 | 0.2042947 | 0.191434 | 0.2238895 | 0.33058 |
| 2 | apply+median | 2.738506 | 2.7896065 | 3.1864199 | 2.937558 | 3.2481650 | 12.31540 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 15.01563 | 14.94746 | 15.59717 | 15.34501 | 14.50789 | 37.25391 |
Table: Benchmarking of rowMedians() and apply+median() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.182541 | 0.1863345 | 0.2039631 | 0.192911 | 0.220481 | 0.27028 |
| 2 | apply+median | 2.741946 | 2.7972355 | 3.1691965 | 2.912469 | 3.183548 | 12.31023 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.0000 | 1.00000 |
| 2 | apply+median | 15.02099 | 15.0119 | 15.53809 | 15.09747 | 14.4391 | 45.54621 |
Figure: Benchmarking of colMedians() and apply+median() on double+100x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 182.377 | 186.6275 | 204.2947 | 191.434 | 223.8895 | 330.58 |
| 2 | rowMedians | 182.541 | 186.3345 | 203.9631 | 192.911 | 220.4810 | 270.28 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.00000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
| 2 | rowMedians | 1.000899 | 0.99843 | 0.9983767 | 1.007715 | 0.984776 | 0.8175933 |
Figure: Benchmarking of colMedians() and rowMedians() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252599 280.6 7916910 422.9 7916910 422.9
Vcells 9933796 75.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252593 280.6 7916910 422.9 7916910 422.9
Vcells 9943839 75.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.169833 | 0.1745720 | 0.2093347 | 0.202332 | 0.2230540 | 0.316110 |
| 2 | apply+median | 0.528834 | 0.5411475 | 0.6521944 | 0.592137 | 0.7022785 | 1.435467 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | apply+median | 3.113847 | 3.099853 | 3.115558 | 2.926561 | 3.148468 | 4.541036 |
Table: Benchmarking of rowMedians() and apply+median() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.170217 | 0.1801315 | 0.2080748 | 0.1969065 | 0.2254305 | 0.302917 |
| 2 | apply+median | 0.527815 | 0.5518570 | 0.6374527 | 0.6040875 | 0.6901700 | 1.032708 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
| 2 | apply+median | 3.100836 | 3.063634 | 3.063575 | 3.06789 | 3.061564 | 3.409211 |
Figure: Benchmarking of colMedians() and apply+median() on double+1000x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMedians | 170.217 | 180.1315 | 208.0748 | 196.9065 | 225.4305 | 302.917 |
| 1 | colMedians | 169.833 | 174.5720 | 209.3347 | 202.3320 | 223.0540 | 316.110 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 2 | rowMedians | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
| 1 | colMedians | 0.9977441 | 0.9691364 | 1.006055 | 1.027554 | 0.9894579 | 1.043553 |
Figure: Benchmarking of colMedians() and rowMedians() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252787 280.6 7916910 422.9 7916910 422.9
Vcells 9934842 75.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252781 280.6 7916910 422.9 7916910 422.9
Vcells 9944885 75.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 0.192799 | 0.199092 | 0.2134576 | 0.211814 | 0.2179785 | 0.305906 |
| 2 | apply+median | 24.453860 | 25.212035 | 26.7656468 | 25.614391 | 26.2556555 | 36.038124 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2 | apply+median | 126.836 | 126.6351 | 125.3909 | 120.9287 | 120.4507 | 117.8078 |
Table: Benchmarking of rowMedians() and apply+median() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 0.19287 | 0.199287 | 0.2125211 | 0.2126835 | 0.218602 | 0.275648 |
| 2 | apply+median | 24.39521 | 25.258805 | 26.8713863 | 25.9733350 | 26.334249 | 36.129646 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.0000 | 1.0000 | 1.000 | 1.000 | 1.0000 | 1.0000 |
| 2 | apply+median | 126.4853 | 126.7459 | 126.441 | 122.122 | 120.4666 | 131.0717 |
Figure: Benchmarking of colMedians() and apply+median() on double+10x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 192.799 | 199.092 | 213.4576 | 211.8140 | 217.9785 | 305.906 |
| 2 | rowMedians | 192.870 | 199.287 | 212.5211 | 212.6835 | 218.6020 | 275.648 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.00000 | 1.0000000 |
| 2 | rowMedians | 1.000368 | 1.000979 | 0.9956129 | 1.004105 | 1.00286 | 0.9010873 |
Figure: Benchmarking of colMedians() and rowMedians() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252968 280.6 7916910 422.9 7916910 422.9
Vcells 9934960 75.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5252962 280.6 7916910 422.9 7916910 422.9
Vcells 10035003 76.6 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.788286 | 1.847881 | 1.90678 | 1.884424 | 1.92834 | 2.272694 |
| 2 | apply+median | 27.450899 | 28.380057 | 30.94689 | 29.288891 | 30.05219 | 46.750083 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2 | apply+median | 15.3504 | 15.35816 | 16.22991 | 15.54262 | 15.58449 | 20.57034 |
Table: Benchmarking of rowMedians() and apply+median() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.830289 | 1.928441 | 1.995154 | 1.979102 | 2.042293 | 2.365565 |
| 2 | apply+median | 27.513177 | 28.842820 | 31.300535 | 29.459474 | 30.431528 | 57.828117 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.0000 |
| 2 | apply+median | 15.03215 | 14.95655 | 15.68828 | 14.88527 | 14.90067 | 24.4458 |
Figure: Benchmarking of colMedians() and apply+median() on double+100x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.788286 | 1.847881 | 1.906780 | 1.884424 | 1.928340 | 2.272694 |
| 2 | rowMedians | 1.830289 | 1.928441 | 1.995154 | 1.979102 | 2.042293 | 2.365565 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowMedians | 1.023488 | 1.043596 | 1.046347 | 1.050242 | 1.059094 | 1.040864 |
Figure: Benchmarking of colMedians() and rowMedians() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5253164 280.6 7916910 422.9 7916910 422.9
Vcells 9936196 75.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5253158 280.6 7916910 422.9 7916910 422.9
Vcells 10036239 76.6 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.669742 | 1.711053 | 1.807156 | 1.755450 | 1.793972 | 2.815782 |
| 2 | apply+median | 5.022684 | 5.148174 | 5.525504 | 5.247178 | 5.320824 | 15.706835 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | apply+median | 3.00806 | 3.008776 | 3.057569 | 2.989079 | 2.965947 | 5.578143 |
Table: Benchmarking of rowMedians() and apply+median() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.687571 | 1.730504 | 1.819095 | 1.761198 | 1.807409 | 3.171408 |
| 2 | apply+median | 5.078287 | 5.193276 | 5.703436 | 5.274445 | 5.370983 | 14.610601 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | apply+median | 3.009229 | 3.001019 | 3.135315 | 2.994804 | 2.971647 | 4.606976 |
Figure: Benchmarking of colMedians() and apply+median() on double+1000x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMedians() and rowMedians() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.669742 | 1.711053 | 1.807156 | 1.755450 | 1.793972 | 2.815782 |
| 2 | rowMedians | 1.687571 | 1.730504 | 1.819095 | 1.761198 | 1.807409 | 3.171408 |
| expr | min | lq | mean | median | uq | max | |
|---|---|---|---|---|---|---|---|
| 1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
| 2 | rowMedians | 1.010678 | 1.011368 | 1.006607 | 1.003275 | 1.007491 | 1.126297 |
Figure: Benchmarking of colMedians() and rowMedians() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 51.72 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colMedians')
Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:20:57 (+0200 UTC). Powered by RSP.