colMads() and rowMads() benchmarks on subsetted computation
This report benchmark the performance of colMads() and rowMads() on subsetted computation.
Data type “integer”
Data
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
Results
10x10 integer matrix
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5243906 280.1 7916910 422.9 7916910 422.9
Vcells 10047688 76.7 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231495 279.4 7916910 422.9 7916910 422.9
Vcells 10006268 76.4 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.006461 |
0.0066115 |
0.0103122 |
0.0067700 |
0.0069370 |
0.322087 |
2 |
colMads(X, rows, cols) |
0.006751 |
0.0069835 |
0.0078828 |
0.0072040 |
0.0074595 |
0.023508 |
3 |
colMads(X[rows, cols]) |
0.007859 |
0.0081680 |
0.0096296 |
0.0083655 |
0.0088925 |
0.022904 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
colMads(X, rows, cols) |
1.044885 |
1.056266 |
0.7644191 |
1.064106 |
1.075321 |
0.0729865 |
3 |
colMads(X[rows, cols]) |
1.216375 |
1.235423 |
0.9338008 |
1.235672 |
1.281894 |
0.0711112 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.005541 |
0.0056780 |
0.0061529 |
0.0057750 |
0.0058790 |
0.016646 |
2 |
rowMads(X, cols, rows) |
0.005881 |
0.0059870 |
0.0095139 |
0.0061465 |
0.0063030 |
0.308944 |
3 |
rowMads(X[cols, rows]) |
0.006677 |
0.0069645 |
0.0075766 |
0.0071005 |
0.0072495 |
0.026886 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.061361 |
1.054421 |
1.546228 |
1.064329 |
1.072121 |
18.559654 |
3 |
rowMads(X[cols, rows]) |
1.205017 |
1.226576 |
1.231385 |
1.229524 |
1.233118 |
1.615163 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+10x10 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
5.541 |
5.6780 |
6.15294 |
5.775 |
5.879 |
16.646 |
1 |
colMads_X_S |
6.461 |
6.6115 |
10.31221 |
6.770 |
6.937 |
322.087 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1 |
colMads_X_S |
1.166035 |
1.164406 |
1.675981 |
1.172294 |
1.179963 |
19.34921 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 integer matrix
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5230452 279.4 7916910 422.9 7916910 422.9
Vcells 9675367 73.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5230446 279.4 7916910 422.9 7916910 422.9
Vcells 9680450 73.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.150744 |
0.1725660 |
0.1883551 |
0.1817665 |
0.2066325 |
0.290421 |
2 |
colMads(X, rows, cols) |
0.155053 |
0.1769645 |
0.1906507 |
0.1871850 |
0.2014920 |
0.284946 |
3 |
colMads(X[rows, cols]) |
0.162317 |
0.1833385 |
0.2039483 |
0.1957515 |
0.2191250 |
0.321468 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.0000000 |
2 |
colMads(X, rows, cols) |
1.028585 |
1.025489 |
1.012188 |
1.029810 |
0.9751225 |
0.9811481 |
3 |
colMads(X[rows, cols]) |
1.076772 |
1.062425 |
1.082786 |
1.076939 |
1.0604576 |
1.1069034 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.158667 |
0.1711335 |
0.1888072 |
0.179911 |
0.1994355 |
0.285859 |
2 |
rowMads(X, cols, rows) |
0.164316 |
0.1754695 |
0.1928971 |
0.184062 |
0.2051630 |
0.276354 |
3 |
rowMads(X[cols, rows]) |
0.168787 |
0.1819430 |
0.2041112 |
0.191321 |
0.2107595 |
0.732824 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowMads(X, cols, rows) |
1.035603 |
1.025337 |
1.021662 |
1.023073 |
1.028719 |
0.9667493 |
3 |
rowMads(X[cols, rows]) |
1.063781 |
1.063164 |
1.081056 |
1.063420 |
1.056780 |
2.5635855 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+100x100 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
158.667 |
171.1335 |
188.8072 |
179.9110 |
199.4355 |
285.859 |
1 |
colMads_X_S |
150.744 |
172.5660 |
188.3551 |
181.7665 |
206.6325 |
290.421 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.0000000 |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
0.9500652 |
1.008371 |
0.9976055 |
1.010313 |
1.036087 |
1.015959 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 integer matrix
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231194 279.4 7916910 422.9 7916910 422.9
Vcells 9679412 73.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231188 279.4 7916910 422.9 7916910 422.9
Vcells 9684495 73.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.132375 |
0.145282 |
0.1571632 |
0.1544420 |
0.1685910 |
0.218577 |
2 |
colMads(X, rows, cols) |
0.136071 |
0.144580 |
0.1607086 |
0.1546965 |
0.1698660 |
0.227247 |
3 |
colMads(X[rows, cols]) |
0.142876 |
0.151133 |
0.1712344 |
0.1625450 |
0.1852135 |
0.309634 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colMads(X, rows, cols) |
1.027921 |
0.995168 |
1.022559 |
1.001648 |
1.007563 |
1.039666 |
3 |
colMads(X[rows, cols]) |
1.079328 |
1.040273 |
1.089532 |
1.052466 |
1.098597 |
1.416590 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.133105 |
0.1412965 |
0.1575030 |
0.1494015 |
0.1704670 |
0.263786 |
2 |
rowMads(X, cols, rows) |
0.138331 |
0.1486965 |
0.1668694 |
0.1651235 |
0.1814835 |
0.220752 |
3 |
rowMads(X[cols, rows]) |
0.145450 |
0.1533105 |
0.1759290 |
0.1682140 |
0.1897590 |
0.269146 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowMads(X, cols, rows) |
1.039262 |
1.052372 |
1.059468 |
1.105233 |
1.064625 |
0.8368602 |
3 |
rowMads(X[cols, rows]) |
1.092746 |
1.085027 |
1.116988 |
1.125919 |
1.113171 |
1.0203195 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+1000x10 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
133.105 |
141.2965 |
157.5030 |
149.4015 |
170.467 |
263.786 |
1 |
colMads_X_S |
132.375 |
145.2820 |
157.1632 |
154.4420 |
168.591 |
218.577 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.0000000 |
1.000000 |
1.0000000 |
1.000000 |
1.0000000 |
1.0000000 |
1 |
colMads_X_S |
0.9945156 |
1.028207 |
0.9978423 |
1.033738 |
0.9889949 |
0.8286149 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 integer matrix
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231398 279.4 7916910 422.9 7916910 422.9
Vcells 9680244 73.9 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231392 279.4 7916910 422.9 7916910 422.9
Vcells 9685327 73.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.116337 |
0.1250735 |
0.1341516 |
0.1331330 |
0.1417995 |
0.203789 |
2 |
colMads(X, rows, cols) |
0.122930 |
0.1317790 |
0.1402742 |
0.1381900 |
0.1449090 |
0.175553 |
3 |
colMads(X[rows, cols]) |
0.129010 |
0.1411950 |
0.1485621 |
0.1472825 |
0.1560985 |
0.185881 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
colMads(X, rows, cols) |
1.056672 |
1.053613 |
1.04564 |
1.037985 |
1.021929 |
0.8614449 |
3 |
colMads(X[rows, cols]) |
1.108934 |
1.128896 |
1.10742 |
1.106281 |
1.100840 |
0.9121248 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.108344 |
0.1189930 |
0.1282284 |
0.1246955 |
0.1343735 |
0.166795 |
2 |
rowMads(X, cols, rows) |
0.111563 |
0.1243335 |
0.1351196 |
0.1306870 |
0.1416940 |
0.199874 |
3 |
rowMads(X[cols, rows]) |
0.118255 |
0.1307120 |
0.1409377 |
0.1370545 |
0.1507270 |
0.203455 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.029711 |
1.044881 |
1.053742 |
1.048049 |
1.054479 |
1.198321 |
3 |
rowMads(X[cols, rows]) |
1.091477 |
1.098485 |
1.099115 |
1.099113 |
1.121702 |
1.219791 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+10x1000 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
108.344 |
118.9930 |
128.2284 |
124.6955 |
134.3735 |
166.795 |
1 |
colMads_X_S |
116.337 |
125.0735 |
134.1516 |
133.1330 |
141.7995 |
203.789 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.0000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
1.073774 |
1.0511 |
1.046193 |
1.067665 |
1.055264 |
1.221793 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 integer matrix
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231611 279.4 7916910 422.9 7916910 422.9
Vcells 9702906 74.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231605 279.4 7916910 422.9 7916910 422.9
Vcells 9752989 74.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.400372 |
1.486560 |
1.569583 |
1.524242 |
1.559886 |
2.352329 |
2 |
colMads(X, rows, cols) |
1.413594 |
1.505658 |
1.573534 |
1.540343 |
1.567050 |
2.504831 |
3 |
colMads(X[rows, cols]) |
1.469610 |
1.557375 |
1.654098 |
1.597702 |
1.650988 |
2.449214 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colMads(X, rows, cols) |
1.009442 |
1.012847 |
1.002517 |
1.010563 |
1.004592 |
1.064830 |
3 |
colMads(X[rows, cols]) |
1.049443 |
1.047637 |
1.053846 |
1.048194 |
1.058403 |
1.041187 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.394227 |
1.417390 |
1.525045 |
1.479062 |
1.539834 |
2.349436 |
2 |
rowMads(X, cols, rows) |
1.414948 |
1.459517 |
1.538112 |
1.511899 |
1.560473 |
2.234901 |
3 |
rowMads(X[cols, rows]) |
1.462044 |
1.506732 |
1.585514 |
1.552474 |
1.627152 |
2.141753 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.014862 |
1.029721 |
1.008568 |
1.022201 |
1.013403 |
0.951250 |
3 |
rowMads(X[cols, rows]) |
1.048641 |
1.063032 |
1.039651 |
1.049634 |
1.056706 |
0.911603 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+100x1000 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.394227 |
1.41739 |
1.525045 |
1.479062 |
1.539834 |
2.349436 |
1 |
colMads_X_S |
1.400372 |
1.48656 |
1.569583 |
1.524242 |
1.559886 |
2.352329 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
1.004407 |
1.048801 |
1.029204 |
1.030546 |
1.013022 |
1.001231 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 integer matrix
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231821 279.5 7916910 422.9 7916910 422.9
Vcells 9703676 74.1 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5231815 279.5 7916910 422.9 7916910 422.9
Vcells 9753759 74.5 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.068531 |
1.103423 |
1.263605 |
1.190616 |
1.350091 |
2.042932 |
2 |
colMads(X, rows, cols) |
1.082369 |
1.130214 |
1.305716 |
1.267970 |
1.382912 |
2.163751 |
3 |
colMads(X[rows, cols]) |
1.131169 |
1.179632 |
1.356598 |
1.344891 |
1.445767 |
2.318192 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colMads(X, rows, cols) |
1.012951 |
1.024280 |
1.033326 |
1.064970 |
1.024311 |
1.059140 |
3 |
colMads(X[rows, cols]) |
1.058621 |
1.069066 |
1.073594 |
1.129576 |
1.070866 |
1.134738 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.069824 |
1.125537 |
1.162773 |
1.131031 |
1.144457 |
1.634217 |
2 |
rowMads(X, cols, rows) |
1.084957 |
1.143484 |
1.188054 |
1.148244 |
1.179420 |
1.846898 |
3 |
rowMads(X[cols, rows]) |
1.139413 |
1.198958 |
1.242890 |
1.201920 |
1.237421 |
1.880642 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.014145 |
1.015945 |
1.021742 |
1.015219 |
1.030549 |
1.130142 |
3 |
rowMads(X[cols, rows]) |
1.065047 |
1.065232 |
1.068902 |
1.062676 |
1.081230 |
1.150791 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on integer+1000x100 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.069824 |
1.125537 |
1.162773 |
1.131031 |
1.144457 |
1.634217 |
1 |
colMads_X_S |
1.068531 |
1.103423 |
1.263605 |
1.190616 |
1.350091 |
2.042932 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.0000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
0.9987914 |
0.9803525 |
1.086717 |
1.052682 |
1.179678 |
1.250098 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Data type “double”
Data
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
Results
10x10 double matrix
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232039 279.5 7916910 422.9 7916910 422.9
Vcells 9794766 74.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232024 279.5 7916910 422.9 7916910 422.9
Vcells 9794934 74.8 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.006820 |
0.007030 |
0.0080161 |
0.0071670 |
0.007302 |
0.043344 |
2 |
colMads(X, rows, cols) |
0.007211 |
0.007546 |
0.0077459 |
0.0076925 |
0.007850 |
0.011437 |
3 |
colMads(X[rows, cols]) |
0.008061 |
0.008479 |
0.0087793 |
0.0085880 |
0.008812 |
0.013953 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
colMads(X, rows, cols) |
1.057331 |
1.073400 |
0.9662843 |
1.073322 |
1.075048 |
0.2638658 |
3 |
colMads(X[rows, cols]) |
1.181965 |
1.206117 |
1.0951979 |
1.198270 |
1.206793 |
0.3219131 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.005948 |
0.0062135 |
0.0064334 |
0.0063220 |
0.0064810 |
0.014349 |
2 |
rowMads(X, cols, rows) |
0.006447 |
0.0066480 |
0.0071979 |
0.0067475 |
0.0068950 |
0.041921 |
3 |
rowMads(X[cols, rows]) |
0.007092 |
0.0074300 |
0.0076489 |
0.0075585 |
0.0077265 |
0.012075 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowMads(X, cols, rows) |
1.083894 |
1.069928 |
1.118843 |
1.067305 |
1.063879 |
2.9215276 |
3 |
rowMads(X[cols, rows]) |
1.192334 |
1.195783 |
1.188941 |
1.195587 |
1.192177 |
0.8415221 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+10x10 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
5.948 |
6.2135 |
6.43337 |
6.322 |
6.481 |
14.349 |
1 |
colMads_X_S |
6.820 |
7.0300 |
8.01614 |
7.167 |
7.302 |
43.344 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
1.146604 |
1.131407 |
1.246025 |
1.13366 |
1.126678 |
3.020698 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x100 double matrix
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232237 279.5 7916910 422.9 7916910 422.9
Vcells 9800702 74.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232231 279.5 7916910 422.9 7916910 422.9
Vcells 9810785 74.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.181034 |
0.1857450 |
0.2217456 |
0.2159095 |
0.2376490 |
0.306645 |
2 |
colMads(X, rows, cols) |
0.185944 |
0.1943390 |
0.2270757 |
0.2206815 |
0.2441455 |
0.313599 |
3 |
colMads(X[rows, cols]) |
0.192420 |
0.1978665 |
0.2360815 |
0.2273085 |
0.2600040 |
0.361669 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colMads(X, rows, cols) |
1.027122 |
1.046268 |
1.024037 |
1.022102 |
1.027337 |
1.022678 |
3 |
colMads(X[rows, cols]) |
1.062894 |
1.065259 |
1.064650 |
1.052795 |
1.094067 |
1.179439 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.180731 |
0.1869020 |
0.2265100 |
0.2222905 |
0.2551420 |
0.309529 |
2 |
rowMads(X, cols, rows) |
0.185157 |
0.1957525 |
0.2300699 |
0.2278440 |
0.2462805 |
0.345742 |
3 |
rowMads(X[cols, rows]) |
0.191981 |
0.2089810 |
0.2381580 |
0.2344965 |
0.2535245 |
0.324251 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.024489 |
1.047354 |
1.015716 |
1.024983 |
0.9652684 |
1.116994 |
3 |
rowMads(X[cols, rows]) |
1.062247 |
1.118131 |
1.051424 |
1.054910 |
0.9936604 |
1.047563 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+100x100 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
181.034 |
185.745 |
221.7457 |
215.9095 |
237.649 |
306.645 |
2 |
rowMads_X_S |
180.731 |
186.902 |
226.5100 |
222.2905 |
255.142 |
309.529 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads_X_S |
0.9983263 |
1.006229 |
1.021486 |
1.029554 |
1.073609 |
1.009405 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x10 double matrix
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232436 279.5 7916910 422.9 7916910 422.9
Vcells 9802098 74.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232430 279.5 7916910 422.9 7916910 422.9
Vcells 9812181 74.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
colMads(X, rows, cols) |
0.185844 |
0.2026050 |
0.2234706 |
0.2167915 |
0.235308 |
0.293963 |
1 |
colMads_X_S |
0.180837 |
0.1986070 |
0.2244415 |
0.2170095 |
0.238893 |
0.317030 |
3 |
colMads(X[rows, cols]) |
0.192272 |
0.2089135 |
0.2324122 |
0.2212985 |
0.248980 |
0.345589 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
colMads(X, rows, cols) |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
0.973058 |
0.980267 |
1.004344 |
1.001006 |
1.015235 |
1.078469 |
3 |
colMads(X[rows, cols]) |
1.034588 |
1.031137 |
1.040012 |
1.020790 |
1.058103 |
1.175621 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.172049 |
0.1858410 |
0.2198896 |
0.2028665 |
0.223965 |
0.382953 |
2 |
rowMads(X, cols, rows) |
0.175466 |
0.1821025 |
0.2244618 |
0.2156545 |
0.240009 |
0.378661 |
3 |
rowMads(X[cols, rows]) |
0.184379 |
0.1902135 |
0.2355515 |
0.2248160 |
0.251848 |
0.471076 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowMads(X, cols, rows) |
1.019861 |
0.9798833 |
1.020793 |
1.063036 |
1.071636 |
0.9887924 |
3 |
rowMads(X[cols, rows]) |
1.071666 |
1.0235282 |
1.071226 |
1.108197 |
1.124497 |
1.2301144 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+1000x10 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
172.049 |
185.841 |
219.8896 |
202.8665 |
223.965 |
382.953 |
1 |
colMads_X_S |
180.837 |
198.607 |
224.4415 |
217.0095 |
238.893 |
317.030 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1 |
colMads_X_S |
1.051079 |
1.068693 |
1.020701 |
1.069716 |
1.066653 |
0.8278562 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

10x1000 double matrix
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232640 279.5 7916910 422.9 7916910 422.9
Vcells 9802233 74.8 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232634 279.5 7916910 422.9 7916910 422.9
Vcells 9812316 74.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
0.150915 |
0.1690890 |
0.1867714 |
0.179132 |
0.2088355 |
0.262401 |
2 |
colMads(X, rows, cols) |
0.159292 |
0.1758265 |
0.1938986 |
0.184998 |
0.2054650 |
0.306824 |
3 |
colMads(X[rows, cols]) |
0.165582 |
0.1879530 |
0.2060520 |
0.195646 |
0.2228385 |
0.311156 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
1.000000 |
2 |
colMads(X, rows, cols) |
1.055508 |
1.039846 |
1.038160 |
1.032747 |
0.9838605 |
1.169294 |
3 |
colMads(X[rows, cols]) |
1.097187 |
1.111563 |
1.103231 |
1.092189 |
1.0670528 |
1.185803 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
0.150267 |
0.1699290 |
0.1893758 |
0.1769815 |
0.207537 |
0.242933 |
2 |
rowMads(X, cols, rows) |
0.159441 |
0.1732380 |
0.1945342 |
0.1850940 |
0.216090 |
0.290576 |
3 |
rowMads(X[cols, rows]) |
0.162003 |
0.1830045 |
0.2048999 |
0.2029095 |
0.228913 |
0.305179 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.061051 |
1.019473 |
1.027239 |
1.045838 |
1.041212 |
1.196116 |
3 |
rowMads(X[cols, rows]) |
1.078101 |
1.076947 |
1.081975 |
1.146501 |
1.102998 |
1.256227 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+10x1000 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
150.267 |
169.929 |
189.3758 |
176.9815 |
207.5370 |
242.933 |
1 |
colMads_X_S |
150.915 |
169.089 |
186.7714 |
179.1320 |
208.8355 |
262.401 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.0000000 |
1.0000000 |
1.000000 |
1.000000 |
1.000000 |
1 |
colMads_X_S |
1.004312 |
0.9950568 |
0.9862478 |
1.012151 |
1.006257 |
1.080137 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

100x1000 double matrix
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232853 279.5 7916910 422.9 7916910 422.9
Vcells 9847683 75.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5232847 279.5 7916910 422.9 7916910 422.9
Vcells 9947766 75.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.835194 |
1.938079 |
2.028240 |
1.974273 |
2.022076 |
3.370790 |
2 |
colMads(X, rows, cols) |
1.865895 |
1.972180 |
2.051073 |
2.019049 |
2.062898 |
3.155397 |
3 |
colMads(X[rows, cols]) |
1.925984 |
2.043358 |
2.156455 |
2.076226 |
2.133806 |
3.724922 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1.000000 |
1.0000000 |
2 |
colMads(X, rows, cols) |
1.016729 |
1.017595 |
1.011258 |
1.02268 |
1.020188 |
0.9361001 |
3 |
colMads(X[rows, cols]) |
1.049472 |
1.054321 |
1.063215 |
1.05164 |
1.055255 |
1.1050591 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.826397 |
1.880685 |
1.980898 |
1.912635 |
1.965585 |
3.078375 |
2 |
rowMads(X, cols, rows) |
1.871696 |
1.925647 |
2.004012 |
1.967893 |
2.015769 |
2.957353 |
3 |
rowMads(X[cols, rows]) |
1.934569 |
1.991013 |
2.091519 |
2.034030 |
2.082826 |
3.001702 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.0000000 |
2 |
rowMads(X, cols, rows) |
1.024802 |
1.023908 |
1.011669 |
1.028891 |
1.025531 |
0.9606864 |
3 |
rowMads(X[cols, rows]) |
1.059227 |
1.058664 |
1.055844 |
1.063470 |
1.059647 |
0.9750930 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+100x1000 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.826397 |
1.880685 |
1.980898 |
1.912635 |
1.965585 |
3.078375 |
1 |
colMads_X_S |
1.835194 |
1.938079 |
2.028240 |
1.974273 |
2.022076 |
3.370790 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
2 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
1 |
colMads_X_S |
1.004817 |
1.030518 |
1.023899 |
1.032226 |
1.028741 |
1.09499 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

1000x100 double matrix
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5233063 279.5 7916910 422.9 7916910 422.9
Vcells 9847824 75.2 33191153 253.3 53339345 407.0
> colStats <- microbenchmark(colMads_X_S = colMads(X_S, na.rm = FALSE), `colMads(X, rows, cols)` = colMads(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colMads(X[rows, cols])` = colMads(X[rows, cols], na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5233057 279.5 7916910 422.9 7916910 422.9
Vcells 9947907 75.9 33191153 253.3 53339345 407.0
> rowStats <- microbenchmark(rowMads_X_S = rowMads(X_S, na.rm = FALSE), `rowMads(X, cols, rows)` = rowMads(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowMads(X[cols, rows])` = rowMads(X[cols, rows], na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.662577 |
1.764182 |
1.881925 |
1.812294 |
1.962526 |
2.706855 |
2 |
colMads(X, rows, cols) |
1.698820 |
1.795595 |
1.928039 |
1.838185 |
1.986263 |
2.907189 |
3 |
colMads(X[rows, cols]) |
1.761786 |
1.857565 |
1.979535 |
1.897971 |
2.022568 |
2.775815 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
colMads(X, rows, cols) |
1.021799 |
1.017806 |
1.024503 |
1.014286 |
1.012095 |
1.074010 |
3 |
colMads(X[rows, cols]) |
1.059672 |
1.052933 |
1.051867 |
1.047275 |
1.030594 |
1.025476 |
Table: Benchmarking of rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.675134 |
1.816307 |
1.982094 |
1.892659 |
2.108662 |
2.734573 |
2 |
rowMads(X, cols, rows) |
1.708224 |
1.859171 |
2.086072 |
1.934903 |
2.267864 |
3.254756 |
3 |
rowMads(X[cols, rows]) |
1.783076 |
1.935579 |
2.138052 |
2.032256 |
2.269516 |
3.282786 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
rowMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
2 |
rowMads(X, cols, rows) |
1.019754 |
1.023599 |
1.052459 |
1.022320 |
1.075499 |
1.190225 |
3 |
rowMads(X[cols, rows]) |
1.064438 |
1.065667 |
1.078683 |
1.073757 |
1.076283 |
1.200475 |
Figure: Benchmarking of colMads_X_S(), colMads(X, rows, cols)() and colMads(X[rows, cols])() on double+1000x100 data as well as rowMads_X_S(), rowMads(X, cols, rows)() and rowMads(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.

Table: Benchmarking of colMads_X_S() and rowMads_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.662577 |
1.764182 |
1.881925 |
1.812294 |
1.962526 |
2.706855 |
2 |
rowMads_X_S |
1.675134 |
1.816307 |
1.982094 |
1.892659 |
2.108662 |
2.734573 |
|
expr |
min |
lq |
mean |
median |
uq |
max |
1 |
colMads_X_S |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.000000 |
1.00000 |
2 |
rowMads_X_S |
1.007553 |
1.029547 |
1.053227 |
1.044344 |
1.074463 |
1.01024 |
Figure: Benchmarking of colMads_X_S() and rowMads_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.

Appendix
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 28.5 secs.
Reproducibility
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowMads_subset')
Copyright Dongcan Jiang. Last updated on 2021-08-25 22:17:15 (+0200 UTC). Powered by RSP.