matrixStats.benchmarks


binMeans() benchmarks on subsetted computation

This report benchmark the performance of binMeans() on subsetted computation.

Results

Non-sorted simulated data

> nx <- 1e+05
> set.seed(48879)
> x <- runif(nx, min = 0, max = 1)
> y <- runif(nx, min = 0, max = 1)
> nb <- 1000
> bx <- seq(from = 0, to = 1, length.out = nb + 1L)
> bx <- c(-1, bx, 2)
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> y_S <- y[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5166771 276.0    7916910 422.9  7916910 422.9
Vcells 9545628  72.9   33191153 253.3 53339345 407.0
> stats <- microbenchmark(binMeans_x_y_S = binMeans(x = x_S, y = y_S, bx = bx, count = TRUE), `binMeans(x, y, idxs)` = binMeans(x = x, 
+     y = y, idxs = idxs, bx = bx, count = TRUE), `binMeans(x[idxs], y[idxs])` = binMeans(x = x[idxs], 
+     y = y[idxs], bx = bx, count = TRUE), unit = "ms")

Table: Benchmarking of binMeans_x_y_S(), binMeans(x, y, idxs)() and binMeans(x[idxs], y[idxs])() on unsorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binMeans_x_y_S 5.293469 5.367801 5.582491 5.444456 5.526404 6.844966
3 binMeans(x[idxs], y[idxs]) 5.859617 5.911293 6.504632 6.054612 6.557577 10.785069
2 binMeans(x, y, idxs) 6.138208 6.209178 6.647663 6.328808 6.417711 12.539914
  expr min lq mean median uq max
1 binMeans_x_y_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 binMeans(x[idxs], y[idxs]) 1.106952 1.101250 1.165184 1.112069 1.186590 1.575621
2 binMeans(x, y, idxs) 1.159581 1.156745 1.190806 1.162432 1.161282 1.831991

Figure: Benchmarking of binMeans_x_y_S(), binMeans(x, y, idxs)() and binMeans(x[idxs], y[idxs])() on unsorted data. Outliers are displayed as crosses. Times are in milliseconds.

Sorted simulated data

> x <- sort(x)
> idxs <- sort(idxs)
> x_S <- x[idxs]
> y_S <- y[idxs]
> gc()
          used  (Mb) gc trigger  (Mb) max used  (Mb)
Ncells 5153160 275.3    7916910 422.9  7916910 422.9
Vcells 9395238  71.7   33191153 253.3 53339345 407.0
> stats <- microbenchmark(binMeans_x_y_S = binMeans(x = x_S, y = y_S, bx = bx, count = TRUE), `binMeans(x, y, idxs)` = binMeans(x = x, 
+     y = y, idxs = idxs, bx = bx, count = TRUE), `binMeans(x[idxs], y[idxs])` = binMeans(x = x[idxs], 
+     y = y[idxs], bx = bx, count = TRUE), unit = "ms")

Table: Benchmarking of binMeans_x_y_S(), binMeans(x, y, idxs)() and binMeans(x[idxs], y[idxs])() on sorted data. The top panel shows times in milliseconds and the bottom panel shows relative times.

  expr min lq mean median uq max
1 binMeans_x_y_S 1.527029 1.598313 1.752372 1.640097 1.726751 5.290372
3 binMeans(x[idxs], y[idxs]) 1.891452 1.916651 2.124493 1.980376 2.088344 5.602020
2 binMeans(x, y, idxs) 2.189744 2.223369 2.595059 2.294065 2.485793 6.148390
  expr min lq mean median uq max
1 binMeans_x_y_S 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
3 binMeans(x[idxs], y[idxs]) 1.238648 1.199171 1.212353 1.207475 1.209407 1.058909
2 binMeans(x, y, idxs) 1.433990 1.391072 1.480884 1.398737 1.439578 1.162185

Figure: Benchmarking of binMeans_x_y_S(), binMeans(x, y, idxs)() and binMeans(x[idxs], y[idxs])() on sorted data. Outliers are displayed as crosses. Times are in milliseconds.

Appendix

Session information

R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] microbenchmark_1.4-7   matrixStats_0.60.0     ggplot2_3.3.5         
[4] knitr_1.33             R.devices_2.17.0       R.utils_2.10.1        
[7] R.oo_1.24.0            R.methodsS3_1.8.1-9001 history_0.0.1-9000    

loaded via a namespace (and not attached):
 [1] Biobase_2.52.0          httr_1.4.2              splines_4.1.1          
 [4] bit64_4.0.5             network_1.17.1          assertthat_0.2.1       
 [7] highr_0.9               stats4_4.1.1            blob_1.2.2             
[10] GenomeInfoDbData_1.2.6  robustbase_0.93-8       pillar_1.6.2           
[13] RSQLite_2.2.8           lattice_0.20-44         glue_1.4.2             
[16] digest_0.6.27           XVector_0.32.0          colorspace_2.0-2       
[19] Matrix_1.3-4            XML_3.99-0.7            pkgconfig_2.0.3        
[22] zlibbioc_1.38.0         genefilter_1.74.0       purrr_0.3.4            
[25] ergm_4.1.2              xtable_1.8-4            scales_1.1.1           
[28] tibble_3.1.4            annotate_1.70.0         KEGGREST_1.32.0        
[31] farver_2.1.0            generics_0.1.0          IRanges_2.26.0         
[34] ellipsis_0.3.2          cachem_1.0.6            withr_2.4.2            
[37] BiocGenerics_0.38.0     mime_0.11               survival_3.2-13        
[40] magrittr_2.0.1          crayon_1.4.1            statnet.common_4.5.0   
[43] memoise_2.0.0           laeken_0.5.1            fansi_0.5.0            
[46] R.cache_0.15.0          MASS_7.3-54             R.rsp_0.44.0           
[49] progressr_0.8.0         tools_4.1.1             lifecycle_1.0.0        
[52] S4Vectors_0.30.0        trust_0.1-8             munsell_0.5.0          
[55] tabby_0.0.1-9001        AnnotationDbi_1.54.1    Biostrings_2.60.2      
[58] compiler_4.1.1          GenomeInfoDb_1.28.1     rlang_0.4.11           
[61] grid_4.1.1              RCurl_1.98-1.4          cwhmisc_6.6            
[64] rstudioapi_0.13         rappdirs_0.3.3          startup_0.15.0         
[67] labeling_0.4.2          bitops_1.0-7            base64enc_0.1-3        
[70] boot_1.3-28             gtable_0.3.0            DBI_1.1.1              
[73] markdown_1.1            R6_2.5.1                lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2               dplyr_1.0.7             fastmap_1.1.0          
[79] bit_4.0.4               utf8_1.2.2              parallel_4.1.1         
[82] Rcpp_1.0.7              vctrs_0.3.8             png_0.1-7              
[85] DEoptimR_1.0-9          tidyselect_1.1.1        xfun_0.25              
[88] coda_0.19-4            

Total processing time was 4.21 secs.

Reproducibility

To reproduce this report, do:

html <- matrixStats:::benchmark('binMeans')

Copyright Dongcan Jiang. Last updated on 2021-08-25 22:09:28 (+0200 UTC). Powered by RSP.