This report benchmark the performance of anyMissing() against alternative methods.
as below
> any_is.na <- function(x) {
+ any(is.na(x))
+ }
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5163671 275.8 7916910 422.9 7916910 422.9
Vcells 36206829 276.3 64826470 494.6 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 0.000972 | 0.0009930 | 0.0010744 | 0.0009990 | 0.0010035 | 0.008498 |
1 | anyMissing | 0.001612 | 0.0016695 | 0.0018263 | 0.0017375 | 0.0018010 | 0.009970 |
3 | any_is.na | 0.003324 | 0.0034300 | 0.0035909 | 0.0035045 | 0.0035825 | 0.010350 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | anyMissing | 1.658436 | 1.681269 | 1.699766 | 1.739239 | 1.794719 | 1.173217 |
3 | any_is.na | 3.419753 | 3.454179 | 3.342126 | 3.508008 | 3.570005 | 1.217934 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5148952 275.0 7916910 422.9 7916910 422.9
Vcells 14530232 110.9 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 0.007916 | 0.008230 | 0.0082227 | 0.0082540 | 0.008288 | 0.009485 |
1 | anyMissing | 0.008685 | 0.009058 | 0.0092577 | 0.0091685 | 0.009296 | 0.018353 |
3 | any_is.na | 0.021791 | 0.022941 | 0.0236603 | 0.0230715 | 0.023256 | 0.037433 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | anyMissing | 1.097145 | 1.100607 | 1.125864 | 1.110795 | 1.121622 | 1.934950 |
3 | any_is.na | 2.752779 | 2.787485 | 2.877425 | 2.795190 | 2.805985 | 3.946547 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149024 275.0 7916910 422.9 7916910 422.9
Vcells 14530792 110.9 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | anyMissing | 0.061841 | 0.0640520 | 0.0681089 | 0.066161 | 0.0692500 | 0.089427 |
2 | anyNA | 0.061046 | 0.0629745 | 0.0685628 | 0.067154 | 0.0719905 | 0.093012 |
3 | any_is.na | 0.166982 | 0.1773790 | 0.1887365 | 0.183707 | 0.1999245 | 0.232223 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | anyMissing | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | anyNA | 0.9871445 | 0.9831777 | 1.006664 | 1.015009 | 1.039574 | 1.040089 |
3 | any_is.na | 2.7001827 | 2.7692968 | 2.771099 | 2.776666 | 2.886996 | 2.596788 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149096 275.0 7916910 422.9 7916910 422.9
Vcells 14530841 110.9 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | anyMissing | 0.515029 | 0.5219540 | 0.5792179 | 0.553552 | 0.5985170 | 0.951800 |
2 | anyNA | 0.514339 | 0.5227355 | 0.5769336 | 0.561902 | 0.6034585 | 0.940549 |
3 | any_is.na | 1.521723 | 2.6115725 | 2.6934416 | 2.670834 | 2.7072815 | 16.097313 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | anyMissing | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | anyNA | 0.9986603 | 1.001497 | 0.9960563 | 1.015084 | 1.008256 | 0.9881792 |
3 | any_is.na | 2.9546356 | 5.003453 | 4.6501355 | 4.824901 | 4.523316 | 16.9124953 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149168 275.0 7916910 422.9 7916910 422.9
Vcells 14530889 110.9 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | anyMissing | 5.848424 | 5.865406 | 6.048396 | 5.882955 | 6.068394 | 8.021888 |
2 | anyNA | 5.844971 | 5.857822 | 6.027307 | 5.894444 | 6.105414 | 8.685206 |
3 | any_is.na | 26.199254 | 26.274106 | 29.676210 | 26.781044 | 28.138399 | 47.873792 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | anyMissing | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 |
2 | anyNA | 0.9994096 | 0.9987068 | 0.9965133 | 1.001953 | 1.006100 | 1.082688 |
3 | any_is.na | 4.4797118 | 4.4795031 | 4.9064596 | 4.552312 | 4.636877 | 5.967896 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149249 275.0 7916910 422.9 7916910 422.9
Vcells 20086917 153.3 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 0.000793 | 0.000831 | 0.0008824 | 0.0008540 | 0.000877 | 0.003541 |
1 | anyMissing | 0.001611 | 0.001701 | 0.0018396 | 0.0017520 | 0.001788 | 0.010478 |
3 | any_is.na | 0.003313 | 0.003404 | 0.0035686 | 0.0034675 | 0.003555 | 0.011881 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | anyMissing | 2.031526 | 2.046931 | 2.084802 | 2.051522 | 2.038769 | 2.959051 |
3 | any_is.na | 4.177806 | 4.096270 | 4.044141 | 4.060304 | 4.053592 | 3.355267 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149312 275.1 7916910 422.9 7916910 422.9
Vcells 20086949 153.3 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 0.006867 | 0.0069195 | 0.0069878 | 0.0069675 | 0.0070210 | 0.008277 |
1 | anyMissing | 0.009443 | 0.0095595 | 0.0098173 | 0.0096610 | 0.0098070 | 0.023121 |
3 | any_is.na | 0.023518 | 0.0238790 | 0.0249262 | 0.0240365 | 0.0243365 | 0.032825 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | anyMissing | 1.375127 | 1.381530 | 1.404934 | 1.386581 | 1.396810 | 2.793403 |
3 | any_is.na | 3.424785 | 3.450972 | 3.567128 | 3.449803 | 3.466244 | 3.965809 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149384 275.1 7916910 422.9 7916910 422.9
Vcells 20087301 153.3 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 0.054290 | 0.0562365 | 0.0626705 | 0.0603040 | 0.0699925 | 0.104676 |
1 | anyMissing | 0.066935 | 0.0674195 | 0.0741177 | 0.0696535 | 0.0801185 | 0.100784 |
3 | any_is.na | 0.177212 | 0.1890785 | 0.2157648 | 0.2116110 | 0.2306565 | 0.315970 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | anyMissing | 1.232916 | 1.198857 | 1.182657 | 1.155039 | 1.144673 | 0.9628186 |
3 | any_is.na | 3.264174 | 3.362202 | 3.442843 | 3.509071 | 3.295446 | 3.0185525 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149456 275.1 7916910 422.9 7916910 422.9
Vcells 20087711 153.3 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 0.503375 | 0.6143685 | 0.6559521 | 0.6444355 | 0.6954275 | 1.006697 |
1 | anyMissing | 0.596418 | 0.6815280 | 0.7438912 | 0.7286160 | 0.7760745 | 1.093139 |
3 | any_is.na | 1.996976 | 2.7094350 | 6.3041081 | 2.8472080 | 3.0822495 | 345.290288 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | anyMissing | 1.184838 | 1.109315 | 1.134063 | 1.130627 | 1.115968 | 1.085867 |
3 | any_is.na | 3.967174 | 4.410114 | 9.610623 | 4.418143 | 4.432165 | 342.993262 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5149528 275.1 7916910 422.9 7916910 422.9
Vcells 20087759 153.3 51861176 395.7 53339345 407.0
> stats <- microbenchmark(anyMissing = anyMissing(x), anyNA = anyNA(x), any_is.na = any_is.na(x), unit = "ms")
Table: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 6.393673 | 6.873240 | 7.116991 | 7.101120 | 7.292291 | 9.152997 |
1 | anyMissing | 7.086472 | 7.780927 | 7.996667 | 8.033691 | 8.175902 | 9.866361 |
3 | any_is.na | 27.671734 | 29.550325 | 33.280614 | 30.928559 | 32.484887 | 53.175226 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | anyNA | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | anyMissing | 1.108357 | 1.132061 | 1.123602 | 1.131327 | 1.121171 | 1.077938 |
3 | any_is.na | 4.327987 | 4.299330 | 4.676220 | 4.355448 | 4.454689 | 5.809597 |
Figure: Benchmarking of anyMissing(), anyNA() and any_is.na() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 4.1.1 Patched (2021-08-10 r80727)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-4-1-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-7 matrixStats_0.60.0 ggplot2_3.3.5
[4] knitr_1.33 R.devices_2.17.0 R.utils_2.10.1
[7] R.oo_1.24.0 R.methodsS3_1.8.1-9001 history_0.0.1-9000
loaded via a namespace (and not attached):
[1] Biobase_2.52.0 httr_1.4.2 splines_4.1.1
[4] bit64_4.0.5 network_1.17.1 assertthat_0.2.1
[7] highr_0.9 stats4_4.1.1 blob_1.2.2
[10] GenomeInfoDbData_1.2.6 robustbase_0.93-8 pillar_1.6.2
[13] RSQLite_2.2.8 lattice_0.20-44 glue_1.4.2
[16] digest_0.6.27 XVector_0.32.0 colorspace_2.0-2
[19] Matrix_1.3-4 XML_3.99-0.7 pkgconfig_2.0.3
[22] zlibbioc_1.38.0 genefilter_1.74.0 purrr_0.3.4
[25] ergm_4.1.2 xtable_1.8-4 scales_1.1.1
[28] tibble_3.1.4 annotate_1.70.0 KEGGREST_1.32.0
[31] farver_2.1.0 generics_0.1.0 IRanges_2.26.0
[34] ellipsis_0.3.2 cachem_1.0.6 withr_2.4.2
[37] BiocGenerics_0.38.0 mime_0.11 survival_3.2-13
[40] magrittr_2.0.1 crayon_1.4.1 statnet.common_4.5.0
[43] memoise_2.0.0 laeken_0.5.1 fansi_0.5.0
[46] R.cache_0.15.0 MASS_7.3-54 R.rsp_0.44.0
[49] progressr_0.8.0 tools_4.1.1 lifecycle_1.0.0
[52] S4Vectors_0.30.0 trust_0.1-8 munsell_0.5.0
[55] tabby_0.0.1-9001 AnnotationDbi_1.54.1 Biostrings_2.60.2
[58] compiler_4.1.1 GenomeInfoDb_1.28.1 rlang_0.4.11
[61] grid_4.1.1 RCurl_1.98-1.4 cwhmisc_6.6
[64] rstudioapi_0.13 rappdirs_0.3.3 startup_0.15.0
[67] labeling_0.4.2 bitops_1.0-7 base64enc_0.1-3
[70] boot_1.3-28 gtable_0.3.0 DBI_1.1.1
[73] markdown_1.1 R6_2.5.1 lpSolveAPI_5.5.2.0-17.7
[76] rle_0.9.2 dplyr_1.0.7 fastmap_1.1.0
[79] bit_4.0.4 utf8_1.2.2 parallel_4.1.1
[82] Rcpp_1.0.7 vctrs_0.3.8 png_0.1-7
[85] DEoptimR_1.0-9 tidyselect_1.1.1 xfun_0.25
[88] coda_0.19-4
Total processing time was 19.11 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('anyMissing')
Copyright Henrik Bengtsson. Last updated on 2021-08-25 22:09:06 (+0200 UTC). Powered by RSP.