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We parallelize software for various reasons

Parallel & distributed processing can be used to:

● speed up processing (wall time)

● lower memory footprint (per machine)

● avoid data transfers (compute where data lives)

● Other reasons, e.g. asynchronous UI
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We may choose to parallelize on:

● Your personal laptop or work desktop computer (single user)

● A shared powerful computer (multiple users)

● Across many computers, e.g. in the office or in the cloud

● High-performance compute (HPC) cluster (multiple users) with 
a job scheduler, e.g. Slurm, Son of Grid Engine (SGE)

We parallelize software for various reasons
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History - What’s Already Available in R?



R comes with built-in parallelization
library(DNAseq)
fq <- c("file1.fq", "file2.fq", "file3.fq")   # In: FASTQ files
bam <- lapply(fq, align)                      # 3 hours
## [1] "file1.bam" "file2.bam" "file3.bam"    # Out: BAM files

To parallelize also on Windows, we can do:

library(parallel)

workers <- makeCluster(3)

bam <- parLapply(fq, align, cl = workers)     # 1 hour

This can be parallelized on Unix & macOS (becomes non-parallel on Windows) as:

library(parallel)

bam <- mclapply(fq, align, mc.cores = 3)      # 1 hour
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Things we need to be aware of



mclapply() - magic with problems

Pros:
  •  mclapply() works similarly to lapply()
  •  mclapply() comes with all R installations
  •  no need to worry about global variables and loading packages

Cons:
  •  Forked processing ⇒ not supported on MS Windows
  •  Forked processing ⇒ unstable with multi-threaded code & GUIs, 
     e.g. may core dump RStudio
  •  There are no mcapply(), mcsapply(), mcvapply(), …
  •  Errors have to be handled with exceptionally great care
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⚠ Use forked processing with care!

R Core & mclapply() author Simon Urbanek (on R-devel, 2020):

“Do NOT use mcparallel() in packages except as a non-default option 
that user can set ... Multicore is intended for HPC applications that need 
to use many cores for computing-heavy jobs, but it does not play well with 
RStudio and more importantly you [as the developer] don't know the 
resource available so only the user can tell you when it's safe to use.”
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https://stat.ethz.ch/pipermail/r-devel/2020-April/079384.html


parLapply() - takes some efforts

Pros:
  •  parLapply() works just like lapply()
  •  parLapply() comes with all R installations
  •  parLapply() works on all operating systems

Cons:
  •  Requires manually loading of packages on workers, e.g.
     clusterEvalQ(workers, library(DNAseq))
  •  Requires manually exporting globals to workers, e.g.
     clusterExport(workers, c("varA", "varB"))
  •  There are no parMapply(), parVapply(), …
  •  Errors have to be handled with great care
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## Error in checkForRemoteErrors(val) : 3 nodes produced
## errors; first error: could not find function "align"

library(DNAseq)

align_and_count <- function(fq) {

  bam <- align(fq)

  count_seqs(bam)

}

library(parallel)

workers <- makeCluster(3)

counts <- parLapply(fq, align_and_count, cl = workers)

Error if we forget to load package on workers
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library(DNAseq)

align_and_count <- function(fq) {

  bam <- align(fq)

  count_seqs(bam)

}

library(parallel)

workers <- makeCluster(3)

clusterEvalQ(workers, library(DNAseq))  # <== Don’t forget!

counts <- parLapply(fq, align_and_count, cl = workers)

Error if we forget to load package on workers
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Design patterns found in packages



My “align them all” function

align_all <- function(fq) {

  lapply(fq, align)

}

> fq <- c("file1.fq", "file2.fq", "file3.fq")

> bam <- align_all(fq)

> bam

[1] "file1.bam" "file2.bam" "file3.bam"
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v1. A first attempt on parallel support
align_all <- function(fq, parallel = FALSE) {

  if (parallel) {

    bam <- mclapply(fq, align, mc.cores = detectCores())     

  } else {

    bam <- lapply(fq, align)                                 

  }

  bam

}

> bam <- align_all(fq, parallel = TRUE)

> bam

[1] "file1.bam" "file2.bam" "file3.bam"
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v2. A much better approach
align_all <- function(fq, parallel = FALSE) {

  if (parallel) {

    bam <- mclapply(fq, align) # let user decide on cores! 👍   

  } else {

    bam <- lapply(fq, align)                                        

  }

  bam

}

> options(mc.cores = 4)                                             

> bam <- align_all(fq, parallel = TRUE)
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v3. Yet another alternative
align_all <- function(fq, ncores = 1) {

  if (ncores > 1) {

    bam <- mclapply(fq, align, mc.cores = ncores)

  } else {

    bam <- lapply(fq, align)

  }

  bam

}

> bam <- align_all(fq, ncores = 4)
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v4. Support also MS Windows

align_all <- function(fq, ncores = 1) {

  if (ncores > 1) {

    if (.Platform$OS.type == "windows") {

      workers <- makeCluster(ncores)                                                  

      on.exit(stopCluster(workers))                                                   

      clusterEvalQ(workers, library(somepkg))                                                                                    

      bam <- parLapply(fq, align, cl = workers)                                             

    } else {

      bam <- mclapply(fq, align, mc.cores = ncores)                              

    }

  } else {

    bam <- lapply(fq, align)                                                     

  }

  bam

}
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More feature requests …

- Can you please add support for AAA parallelization too?

- While you’re at it, what about BBB parallelization?
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v99: Phew … will this do?
align_all <- function(fq, parallel = "none") {

  if (parallel == "snow") {

    workers <- getDefaultCluster()

    clusterEvalQ(workers, library(somepkg))

    bam <- parLapply(fq, align, cl = workers)

  } else if (parallel == "multicore") {

    bam <- mclapply(fq, align)

  } else if (parallel == "clustermq") {

    bam <- clustermq::Q(align, fq, pkgs="somepkg")

  } else if (parallel == ...) {

    ...

  } else {

    bam <- lapply(fq, align)

  }

  bam

}
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What’s my 
test coverage 
now?



- There is this new, cool DDD parallelization method … ?

- …

- Still there?
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Some months later …



Welcome to the Future
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Parallel Map-Reduce APIs

Parallel frameworks reimplement common ideas
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parallel
mclapply(), 

parLapply(), …

foreach
foreach() %dopar% { … }

BiocParallel
bplapply(), …

...

Common needs, strategies & re-implementations:

● Familiar map-reduce functions in a unified API
● Multiple parallel backends to choose from
● Efficient iteration & chunking
● Loading of packages and globals to export
● Handling of errors, warnings, and output



Parallel Map-Reduce APIs

Idea: Collect common tasks in one place
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parallel
mclapply(), 

parLapply(), …

foreach
foreach() %dopar% { … }

BiocParallel
bplapply(), …

...

Future API 
● Unified low-level API
● Multiple parallel backends to choose from
● Loading of packages and globals to export
● Handling of errors, warnings, and output
● Protection against non-exportable globals

“Serves your low-level parallelization tasks
in a robust, standardized, consistent manner”



R package: future
● "Write once, run anywhere"
● 100% cross-platform
● Works with any type of parallel backends
● A simple unified API
● Easy to install (< 0.5 MiB total)
● Very well tested, lots of CPU mileage

“Low friction”:

● automatically exports global variables
● automatically relays output, messages, and warnings
● proper parallel random number generation (RNG)
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A Future is ...
● A future is an abstraction for a value that will be available later
● The state of a future is either unresolved or resolved
● The value is the result of an evaluated expression

Friedman & Wise (1976, 1977), Hibbard (1976), Baker & Hewitt (1977)

An R assignment:

v <- expr

Future API:

f <- future(expr)
v <- value(f)

v %<-% expr

25



Example: Sum of 1:100

> slow_sum(1:100)        # 2 minutes

[1] 5050

> a <- slow_sum(1:50)    # 1 minute

 > b <- slow_sum(51:100)  # 1 minute
> a + b                  # 1275 + 3775

[1] 5050
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Example: Sum of 1:50 and 51:100 in parallel
> library(future)

> plan(multisession)  # parallelize on local computer

>  fa <- future( slow_sum( 1:50 ) )   # ~0 seconds
>   fb <- future( slow_sum(51:100) )   # ~0 seconds
>   mean(1:3)

[1] 2

>   a <- value(fa)                     # blocks until ready

>   b <- value(fb)
>   a + b                               # here at ~1 minute

[1] 5050
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User chooses how to parallelize - many options

plan(sequential)

plan(multicore)            # uses the mclapply() machinery

plan(multisession)         # uses the parLapply() machinery

plan(cluster, workers = c("n1", "n2", "n3"))

plan(cluster, workers = c("n1", "m2.uni.edu", "vm.cloud.org"))

plan(batchtools_slurm)     # on a Slurm job scheduler

plan(future.callr::callr)  # locally using callr package

plan(future.mirai::mirai_multisession) # locally using mirai package

...
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Parallelize on other machines is easy
> library(future)

> plan(cluster, workers = c("alice", "bob"))

>  fa <- future( slow_sum( 1:50 ) )   # ~0 seconds
>   fb <- future( slow_sum(51:100) )   # ~0 seconds
>   mean(1:3)

[1] 2

>   a <- value(fa)                     # blocks until ready

>   b <- value(fb)
>   a + b                               # here at ~1 minute

[1] 5050
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Parallelize on other machines is easy
> library(future)

> plan(cluster, workers = c("alice", "bob", "carole", "dave"))

>  fa <- future( slow_sum( 1:50 ) )   # ~0 seconds
>   fb <- future( slow_sum(51:100) )   # ~0 seconds
>   mean(1:3)

[1] 2

>   a <- value(fa)                     # blocks until ready

>   b <- value(fb)
>   a + b                               # here at ~1 minute

[1] 5050
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Parallelize on other machines is easy
> library(future)

> plan(cluster, workers = c("alice", "bob", "carole", "dave"))

>  fa <- future( slow_sum( 1:25 ) )   # ~0 seconds
> fb <- future( slow_sum(26:50 ) )   # ~0 seconds
> fc <- future( slow_sum(51:75 ) )   # ~0 seconds
> fd <- future( slow_sum(76:100) )   # ~0 seconds

> y <- value(fa) + value(fb) + value(fc) + value(fd)
> y                                   # here at ~30 seconds
[1] 5050
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Static-code inspection by walking the abstract syntax tree (AST):

x <- rnorm(n = 100)
f <- future({ slow_sum(x) })

Globals automatically identified (99% worry free)
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Static-code inspection by walking the abstract syntax tree (AST):

x <- rnorm(n = 100)          lobstr::ast( { slow_sum(x) } )
f <- future({ slow_sum(x) })     |  █─`{`
                   |_____________|  └─█─ slow_sum
                                 |    └─ x

=> globals & packages identified and exported to the worker:
  - slow_sum() - a function (also searched recursively)
  - x - a numeric vector of length 100

Comment: Globals & packages can also be specified manually;
f <- future({ slow_sum(x) }, globals = c("slow_sum", "x"))



Other frameworks need manual exports
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With other parallel frameworks, you have to manually export the globals that 
need to be available on the parallel workers, e.g.

library(parallel)

cl <- makeCluster(2)

x <- rnorm(n = 100)

clusterExport(cl, c("slow_sum", "x"))

y <- clusterEvalQ(cl, { slow_sum(x) })

Conclusion: This is not needed when using Futureverse for parallelization
(except for rare, corner cases)


