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A future is a programming construct designed for concurrent and asynchronous evaluation of
code, making it particularly useful for parallel processing. The future package implements the
Future API for programming with futures in R. This minimal API provides sufficient constructs
for implementing parallel versions of well-established, high-level map-reduce APIs. The future
ecosystem supports exception handling, output and condition relaying, parallel random number
generation, and automatic identification of globals lowering the threshold to parallelize code.
The Future API bridges parallel frontends with parallel backends, following the philosophy
that end-users are the ones who choose the parallel backend while the developer focuses on
what to parallelize. A variety of backends exist, and third-party contributions meeting the
specifications, which ensure that the same code works on all backends, are automatically
supported. The lectures focus on R but programmers from other languages will also find the
material useful.
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Introduction

In these lectures, I will cover how to parallelize R code using the Futureverse, which at its
core consist of the future package (Bengtsson (2021)). Other packages in the Futureverse
build on the future package to provide more powerful features, e.g. future.apply, furrr, and
doFuture.

The Futureverse builds upon, enhances, and unifies established parallelization frameworks in
R, e.g. parallel and foreach. You can think of it as a user friendly, unifying wrapper on
top of many of the existing more low-level alternatives that each come with their own unique
functions and settings. By using Futureverse, there are less things you have to worry about
and your code will be less cluttered by special parallelization instructions.

The future package was introduced in 2015, and is now a stable and well established solution
for parallelization in R. For example, it is among the top-0.9% most downloaded R packages,
and there are hundreds of R packages that use it for their parallelization needs.
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Take-home messages of this lecture set

By following these two lectures, you will learn that:

• parallelization does not have to be hard

• there are things you cannot parallelize

• Futureverse simplifies parallelization in R (disclaimer!)

• foreach() is not the same as a for-loop

• forked parallel processing is neat, but we should use it with great caution

You will also learn:

• a bit about the “future” concept for parallel programming

• why it is called “futures”

• that many programming languages supports futures, e.g. R, Python, Julia, and C++

• about common mistakes to avoid

From this, I hope that you will think of parallelization as being less magic, especially if you
never used it before.
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Disclaimer

I am the creator and lead maintainer of the Futureverse ecosystem. I choose to use it to teach
parallelization in R, because I think it is the simplest way to parallelize tasks in R.
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Part I

Lecture 1
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1 Why do we parallelize?

Parallel & distributed processing can be used to:

• speed up processing (wall time)

• lower memory footprint (per machine)

• avoid data transfers (compute where data lives)

• other reasons, e.g. asynchronous user interface

We may choose to parallelize on:

• Your personal laptop or work desktop computer (single user)

• A shared powerful user (multiple users)

• High-performance compute (HPC) cluster (multiple users) with a job scheduler,
e.g. Slurm, Son of Grid Engine (SGE)
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2 How do you do two things at the same time
in R?

Attaching package: 'listenv'

The following object is masked from 'package:purrr':

map

Imagine we have a very slow function called slow_sum() that takes a numeric vector as input,
calculates the sum, and returns it as numeric scalar:

slow_sum <- function(x) {
sum <- 0

for (value in x) {
Sys.sleep(1.0) ## one-second slowdown per value
sum <- sum + value

}

sum
}

For example, we can calculate the sum of 1, 2, ..., 10 as:

y <- slow_sum(1:10)
y

[1] 55

The problem is that this takes more than 10 seconds to complete, e.g.
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tic()
y <- slow_sum(1:10)
toc()

Time difference of 10.1 secs

This will be costly if we want repeat this twice or more;

tic()
y1 <- slow_sum(1:10)
y2 <- slow_sum(11:20)
toc()

Time difference of 20.2 secs

Wouldn’t it be great if we could run these two tasks concurrently?

If they could run at the same time, we would finish both in the same period of time as when
we call the function once. It turns out we can use the future package for this. Here’s is how
we can do it with a minimal tweak.

library(future) ## defines %<-%
plan(multisession) ## set them to run in parallel

y1 %<-% slow_sum(1:10)
y2 %<-% slow_sum(11:20)
y1

[1] 55

y2

[1] 155

The %<-% assignment operator works by launching slow_sum(1:10) in the background, prepar-
ing to assign the result to y1 when its done, and then returning immediately. Same for the
second expression. This means that both of these future assignments complete almost in-
stantly:

11
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tic()
y1 %<-% slow_sum(1:10)
y2 %<-% slow_sum(11:20)
toc()

Time difference of 0.9 secs

What happens next, is that whenever we try to “use” the value of y1 or y2, R will automatically
wait for the result to become available. This is where we might have to wait:

y1

[1] 55

toc()

Time difference of 9.6 secs

In other words, we have to wait for y1 to complete, but, since the both future expressions ran
in parallel, y2 completes in about the same time, and we do not have to spend time waiting
for its result:

y2

[1] 155

toc()

Time difference of 11.4 secs

So, all in all, we completed both tasks in the same amount of time as as single one.
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3 Parallelizing map-reduce calls

Next, assume we have four sets of numeric vectors, and we want to calculate slow_sum() for
each of them. We have them in a list, e.g.

xs <- list(1:25, 26:50, 51:75, 76:100)

We could keep doing what we did in the previous section;

ys <- list()
ys[[1]] <- slow_sum(xs[[1]])
ys[[2]] <- slow_sum(xs[[2]])
ys[[3]] <- slow_sum(xs[[3]])
ys[[4]] <- slow_sum(xs[[4]])

This will give us the results in a list ys of the same length as xs, e.g.

str(ys)

List of 4
$ : num 325
$ : num 950
$ : num 1575
$ : num 2200

This approach will become very tedious when there are more sets, i.e. when length(xs) is
large. It is also error prone, e.g. it’s too easy to introduce a silent bug from a single typo,
e.g.

ys <- list()
ys[[1]] <- slow_sum(xs[[1]])
ys[[2]] <- slow_sum(xs[[2]])
ys[[3]] <- slow_sum(xs[[2]])
ys[[4]] <- slow_sum(xs[[4]])
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Whenever you find yourself repeating code by cut’n’paste from previous lines, it’s a good indi-
cator to stop and think. There’s almost always a better way to this - you just have find what
it is!

R is designed to simplify above type of tasks. In this case we can use lapply() to achieve the
same:

ys <- lapply(xs, slow_sum)
str(ys)

List of 4
$ : num 325
$ : num 950
$ : num 1575
$ : num 2200

3.1 Parallelizing a map-reduce call using the ‘future.apply’ package

Since there are four sets of data, each comprise of 25 values, and each value takes about one
second to process, processing all of the data takes about 100 seconds;

tic()
ys <- lapply(xs, slow_sum)
toc()

Time difference of 100.6 secs

Can we speed this up by processing the different elements in xs concurrently?

Yes, we can. Unfortunately, the built-in lapply() function is not implemented to run in
parallel. However, the future.apply package provides the future_lapply() function that
can run in parallel. It is designed to be a plug-and-play replacement of lapply(). We just
have to prepend future_ to the lapply name.

library(future.apply)
plan(multisession)

ys <- future_lapply(xs, slow_sum)
str(ys)

14
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List of 4
$ : num 325
$ : num 950
$ : num 1575
$ : num 2200

By design, this gives identical result to lapply(), but it performs slow_sum(xs[[1]]),
slow_sum(xs[[2]]), …, in parallel.

To convince ourselves it runs in parallel, be can measure the processing time:

tic()
ys <- future_lapply(xs, slow_sum)
toc()

Time difference of 26.2 secs

3.2 Parallelizing a map-reduce call using the ‘furrr’ package

If you use the Tidyverse framework, you might already be aware of the purrr package. It
provides an alternative to the built-in lapply() function called map(). It works very similarly.
Our

ys <- lapply(xs, slow_sum)

can be written as:

library(purrr)

ys <- map(xs, slow_sum)

It gives identical results. To run this in parallel, you can use future_map() of the furrr
package. Just as future_lapply() can replace lapply() as-is, future_map() replaces map()
as-is:

library(furrr)
plan(multisession)

ys <- future_map(xs, slow_sum)

15
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3.3 Comment about pipes

All of the above works also with pipes. You can use the semi-legacy magrittr %>% pipe operator
popularized by Tidyverse, or the zero-cost |> pipe operator that is now built-in with R.

Just like the Tidyverse maintainers, I recommend using the latter. There is zero overhead
added when using it, and there is truly no extra code being executed behind the scenes.
Instead, it just a different way that R parses you code - after that everything is the same. The
following two R expressions are identical from R’s perspective:

y <- g(f(x))

and

y <- x |> f() |> g()

The analogue is mathematics, is that the following expressions are equivalent:

ℎ(𝑥) = 𝑔(𝑓(𝑥))

ℎ(𝑥) = (𝑓 ∘ 𝑔)(𝑥)

Thus, when programming in R, we can use either of:

ys <- lapply(xs, slow_sum)
ys <- xs |> lapply(slow_sum)

Same for

ys <- future_lapply(xs, slow_sum)
ys <- xs |> future_lapply(slow_sum)

and

ys <- future_map(xs, slow_sum)
ys <- xs |> future_map(slow_sum)

16
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4 For loops - can they be parallelized?

Let’s go back to your example with:

xs <- list(1:25, 26:50, 51:75, 76:100)

where we used:

ys <- lapply(xs, slow_sum)

to calculate the the slow_sum() of each element in x.

Someone, who is not familiar with R and its lapply(), might choose to solve this problem
using a for-loop, e.g.

ys <- list()
for (ii in 1:length(xs)) {
ys[[ii]] <- slow_sum(xs[[ii]])

}

By the way, can you spot the potential problem with this solution?

When using 1:length(xs), there is a risk it becomes 1:0 (= c(1, 0)), which happens if
xs is an empty list. To avoid this, it’s safer to use seq_len(length(xs)), or the short cut
seq_along(xs). Those will return an empty index vector, if length(xs) == 0.

4.1 Parallelize a for-loop using futures

Since we are already familiar with the future assignment operator (%<-%), we can parallelize
the above for-loop as follows:

library(future)
library(listenv)
plan(multisession)
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ys <- listenv()
for (ii in seq_along(xs)) {
ys[[ii]] %<-% slow_sum(xs[[ii]])

}
ys <- as.list(ys)

Without going into the technical details, we cannot use a list for ys when doing this. Instead,
we need to use a list environment part of the listenv package. Then, at the very end, we
coerce it to a regular list using as.list(). This gives identical results, but the for loop is run
in parallel.

This works, but if length(xs) is large, it is not as efficient as parallel map-reduce solutions
such as future_lapply() and future_lap().

4.2 Replace a for-loop with a map-reduce call

Regardless of sequential or parallel processing, I recommend to always strive toward using
map-reduce functions instead of for-loop. It is not always possible to do so, but in many cases
it is.

If we look at the above for-loop, we see that each iteration is independent of the others, e.g. the
result from the second iteration is independent of the result obtained in the first iteration,
i.e. the value of ys[[2]] only depends on xs[[1]] and the function slow_sum(), but not on
ys[[1]] or any other xs elements. We will return to this later, but when a for-loop algorithm
has this property, because turn it into a map-reduce call, and we already know that we can
parallelize those.

As a rule of thumb, the first step towards replacing a for-loop with a map-reduce call, is to
get rid of the auxiliary index variable, which in our example is ii. In our example, all we use
ii for is to extract element xs[[ii]] and then assign the result to ys[[ii]]. We can make
this explicit by rewriting the for-loop as:

ys <- list()
for (ii in seq_along(xs)) {
x <- xs[[ii]]
y <- slow_sum(x)
ys[[ii]] <- y

}

This form helps us see how ii is used and that there is no dependencies between iterations.

18

https://listenv.futureverse.org/


Next, we can replace the above iterate-over-indices approach with an iterate-over-elements
approach, as in:

ys <- list()
for (x in xs) {
ys <- c(ys, slow_sum(x))

}

Note how we got rid of the iteration index ii. This might look like syntactic sugar, but
it’s an important move as we will see soon. First, by getting rid of the index variable, the
code becomes “cleaner”. By “cleaner” we often mean it is more readable (to the used reader).
Second, cleaner code is often also less error prone. For example, without the index variable,
there is no risk we’re making mistakes using it, e.g. we might use ii + 1 when it should be
ii.

The above code reads as “for each element x in the list xs, do …”. Note how similar this is to
“for each element x in the list xs, apply function …‘, which is how a map-reduce call reads.

Since we got rid of ii, we can replace the latter for-loop with an lapply() call as in:

ys <- lapply(xs, slow_sum)

Digest that for a while, and note how concise and clear that is compare that the more explicit
for-loop that we started out with:

ys <- list()
for (ii in 1:length(xs)) {
ys[[ii]] <- slow_sum(xs[[ii]])

}

One way to think about it is that:

• an lapply() call communicates what is done, whereas

• a for-loop communicates how it is done.

After working with R for a while, and seeing a lot of lapply() calls, you will get used to
this form and prefer to to the more verbose syntax that comes from using a for-loop. I’ve
worked with R for more than 20 years and to me an lapply() call is much easier to read and
brings much less mental load compared to a for-loop. It is only if I try to think about what
happens under the hood of lapply(), that it can become overwhelming. I can imagine there
is some kind of for loop running inside, but if you think about it, it does not matter how it is
implemented internally.
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Finally, we now have a lapply() call, and we already know how to parallelize that; all we
have to do is replace lapply() with future_lapply().

Conclusion: To parallelize a for-loop, convert it first to a map-reduce call, and then replace
that with the corresponding future_ version.

4.3 How do I know if my for-loop can be rewritten as a map-reduce
call?

Not all for-loops can be parallelized. We already touched upon one rule of thumb above. If
the different iterations are independent of each other, we can get rid of iteration index variable
(ii) and then we can basically always parallelize the code.

Another “smell test” for being able to parallelize a for-loop comes from asking ourselves the
following question:

Q. Does it matter in what order we “process” the different elements in xs, i.e. in what order
we call slow_sum() on each of them?

If the answer is “No, it doesn’t matter”, then we can parallelize the for loop.

For example, if we go back to our original for-loop;

ys <- list()
for (ii in 1:length(xs)) {
ys[[ii]] <- slow_sum(xs[[ii]])

}

we note that we could iterate over the elements in xs in reverse order:

ys <- list()
for (ii in length(xs):1) {
ys[[ii]] <- slow_sum(xs[[ii]])

}

and still get the identical result. We could even iterate over the elements in a random order,
e.g.

ys <- list()
for (ii in sample(1:length(xs), replace = FALSE)) {
ys[[ii]] <- slow_sum(xs[[ii]])

}

20



In all three cases, ys holds identical values in the same order.

By the way, a similar smell test for an lapply() call is to check if we get the same results if
we reverse the input, and the output, as in:

ys_r <- lapply(rev(xs), slow_sum)
ys <- rev(ys_r)

If you think about it, lapply() could very well be implemented such that it process the
elements in reverse order. If you read the documentation, help("lapply"), there is nothing
saying in what order the elements is processed. This is intentional, because we should not use
this function under the assumption that elements are process in a certain order. This is what
future_lapply() and friends rely on and why it is valid to parallelize map-reduce calls.

Conclusion: If we have an algorithm that allows us to reverse the order of the processing, or
process the elements in a random order, we can most likely also run the iterations concur-
rently.

4.3.1 Not all algorithms can be parallelized

It is only for some algorithms that the order of the processing does not matter. We referred
to such algorithms as embarrassingly parallelizable algorithms. As the term suggests, the
algorithm can be parallelized, i.e. it is valid to process the elements concurrently. For other
algorithms, it is essential that the elements are processed in a given order. It is often that the
algorithm is such that the input data in one iteration depends on the output of the previous
iteration. We cannot use parallelization for such algorithms.

Q: What about the following algorithm - can it be reversed?

ys <- list()
y <- 0
for (ii in 2:length(xs)) {
x <- xs[[ii]]
y <- ys[[ii - 1]]
ys[[ii]] <- slow_sum(x + y)

}

Without going into details, another criteria is that slow_sum() does not have, so called, side
effects. This is now mathematical functions work, and this is one reason why we refer to R as
a functional language. As a rule of thumb, most function calls in R does not have side effects,
and if they do, you often already know it.
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Part II

Lecture 2
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5 Demo and parallel backends

5.1 Parallelize on local machine

library(future)
options(future.demo.mandelbrot.resolution = 5000) # 5000x5000 px

demo("mandelbrot", ask = FALSE)

1. plan(sequential) - default
2. plan(multisession)
3. plan(multicore)

5.2 Parallelize on local machine

5.2.1 Standalone background R processes

plan(multisession)
plan(multisession, workers = availableCores()) ## default
plan(multisession, workers = 2)

Real-world example:

library(future.apply)
plan(multisession, workers = 3)

info <- future_lapply(seq_len(nbrOfWorkers()), function(idx) {
data.frame(idx = idx, hostname = Sys.info()[["nodename"]], pid = Sys.getpid())

})
info <- do.call(rbind, info)
info
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idx hostname pid
1 1 hb-x1-2023 252154
2 2 hb-x1-2023 252153
3 3 hb-x1-2023 252152

5.2.2 Forked R processes

plan(multicore)
plan(multicore, workers = availableCores()) ## default
plan(multicore, workers = 2)

library(future.apply)
plan(multicore, workers = 3)

info <- future_lapply(seq_len(nbrOfWorkers()), function(idx) {
data.frame(idx = idx, hostname = Sys.info()[["nodename"]], pid = Sys.getpid())

})
info <- do.call(rbind, info)
info

idx hostname pid
1 1 hb-x1-2023 252285
2 2 hb-x1-2023 252286
3 3 hb-x1-2023 252287

5.3 Parallelize on multiple machines

plan(cluster)
plan(cluster, workers = availableWorkers()) ## default
plan(cluster, workers = c("dev1", "dev2", "dev3"))

Real-world example:

library(future.apply)
plan(cluster, workers = c("dev1", "dev2", "dev3", "dev3", "dev3"))

info <- future_lapply(seq_len(nbrOfWorkers()), function(idx) {

24



data.frame(idx = idx, hostname = Sys.info()[["nodename"]], pid = Sys.getpid())
})
info <- do.call(rbind, info)
info

idx hostname pid
1 1 dev1.wynton.ucsf.edu 281122
2 2 dev2.wynton.ucsf.edu 29646
3 3 dev3.wynton.ucsf.edu 43826
4 4 dev3.wynton.ucsf.edu 43881
5 5 dev3.wynton.ucsf.edu 43921

5.4 Parallelize via HPC job scheduler

plan(batchtools_slurm) ## Slurm cluster
plan(batchtools_sge) ## SGE cluster

library(future.apply)
plan(future.batchtools::batchtools_sge, workers = 3)

info <- future_lapply(seq_len(nbrOfWorkers()), function(idx) {
data.frame(idx = idx, hostname = Sys.info()[["nodename"]], pid = Sys.getpid())

})

If we peek at the job scheduler queue right after calling future_lapply(), we would see
something like:

$ qstat
job-ID prior name user state time
------------------------------------------------------------
279873 0.000 future_lapply_1 hb qw 04/26/2023 22:46:54
279889 0.000 future_lapply_2 hb qw 04/26/2023 22:47:02
279912 0.000 future_lapply_3 hb qw 04/26/2023 22:47:13

These three jobs represent the three futures we created. When completed, we will see something
like:
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info <- do.call(rbind, info)
info

idx hostname pid
1 1 qb3-as92 14596
2 2 qb3-as17 48397
3 3 qb3-as04 8698

5.5 Alternatives

The future.callr package parallelizes on the local machine using the callr package. It works
similarly to multisession, but can use more than 125 parallel workers1:

library(future.callr)
plan(callr)
plan(callr, workers = availableCores()) ## default
plan(callr, workers = 2)

1There is no variable f created; instead it is hidden away using the name ...future.v.
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6 The Future API

Previously, we saw several examples of how to use future assignments (%<-%), e.g.

y1 %<-% slow_sum(1:10)
y2 %<-% slow_sum(11:20)

y1

[1] 55

y2

[1] 155

for performing multiple tasks concurrently. That %<-% assignment operator doing a lot of
things under the hood. A more explicit way of implementing this would be to use the future()
and value() functions, as in:

f1 <- future(slow_sum(1:10))
f2 <- future(slow_sum(11:20))

y1 <- value(f1)
y1

[1] 55

y2 <- value(f2)
y2
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[1] 155

The future() and value() are two of three core functions part of the Future API, which we
will go into details next.

6.1 Three atomic building blocks

There are three atomic building blocks part of the Future API that do everything we need for
performing tasks concurrently:

• f <- future(expr) : evaluates an expression via a future (non-blocking, if possible)

• r <- resolved(f) : TRUE if future is resolved, otherwise FALSE (non-blocking)

• v <- value(f) : the value of the future expression expr (blocking until resolved)

where expr is an R expression. Here are three examples:

f <- future(1 + 2)

f <- future(slow_sum(1:10))

f <- future({
x <- rnorm(10)
sum(x)

})

6.1.1 Mental model: The Future API decouples a regular R assignment into two
parts

Let’s consider a regular assignment in R:

v <- expr

To use, this assignment is single operator, but internally it’s done in two steps:

1. R evaluates the expression expr on the right-hand side (RHS), and

2. assigns the resulting value to the variable v on the left-hand side (LHS).

We can think of the Future API as decoupling these two steps and giving us full access to
them:
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f <- future(expr)
v <- value(f)

This decoupling is the key feature of all parallel processing!

Let’s break this down using our example very slow, implementation of sum();

slow_sum <- function(x) {
sum <- 0

for (value in x) {
Sys.sleep(1.0) ## one-second slowdown per value
sum <- sum + value

}

sum
}

For example, if we call:

x <- 1:10
v <- slow_sum(x)
v

[1] 55

it takes ten seconds to complete.

We can evaluate this via a future running in the background as:

library(future)
plan(multisession) # evaluate futures in parallel

x <- 1:10
f <- future(slow_sum(x))
v <- value(f)

When we call:

f <- future(slow_sum(x))

then:
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1. a future is created, comprising:

• the R expression slow_sum(x),

• function slow_sum(), and

• integer vector x

2. These future components are sent to a parallel worker, which starts evaluating the R
expression

3. The future() function returns immediately a reference f to the future, and before the
future evaluation is completed

When we call:

v <- value(f)

then:

1. the future asks the worker if it’s ready or not (using resolved() internally)

2. if it is not ready, then it waits until it’s ready (blocking)

3. when ready, the results are collected from the worker

4. the value of the expression is returned

As we saw before, there is nothing preventing us from doing other things in-between creating
the future and asking for its value, e.g.

x <- 1:10

## Create future
f <- future(slow_sum(x))

## We are free to do whatever we want while future is running, e.g.
z <- sd(x)

## Wait for future to be done
v <- value(f)
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6.1.2 Keep doing other things while waiting

We can use the resolved() function to check whether the future is resolved or not. If not, we
can choose to do other things, e.g. output a message:

f <- future(slow_sum(x))

while (!resolved(f)) {
message("Waiting ...")
Sys.sleep(1.0)

}

Waiting ...
Waiting ...
Waiting ...
Waiting ...
Waiting ...
Waiting ...
Waiting ...
Waiting ...

message("Done!")

Done!

v <- value(f)
v

[1] 55

We can of course do other things than outputting messages, e.g. calculations and checking in
on other futures.

6.1.3 Evaluate several things in parallel

There’s nothing preventing us from launching more than one future in the background. For
example, we can split the summation of x into two parts, calculate the sum of each part, and
then combine the results at the end:
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x_head <- head(x, 5)
x_tail <- tail(x, 5)

v1 <- slow_sum(x_head) ## ~5 secs (blocking)
v2 <- slow_sum(x_tail) ## ~5 secs (blocking)
v <- v1 + v2
v

[1] 55

We can do the same in parallel:

f1 <- future(slow_sum(x_head)) ## ~5 secs (in parallel)
f2 <- future(slow_sum(x_tail)) ## ~5 secs (in parallel)

## Do other things
z <- sd(x)

v <- value(f1) + value(f2) ## ready after ~5 secs
v

[1] 55

We can launch as manual parallel futures as we have parallel workers, e.g.

plan(multisession, workers = 8)
nbrOfWorkers()

[1] 8

plan(multisession, workers = 2)
nbrOfWorkers()

[1] 2

If we launch more than this, then the call to future() will block until one of the workers are
free again. For example,
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plan(multisession, workers = 2)
nbrOfWorkers()

[1] 2

f1 <- future(slow_sum(x_head))
f2 <- future(slow_sum(x_tail))

Immediately after these lines have been be completed by R, both these futures are still unre-
solved:

resolved(f1)

[1] TRUE

resolved(f2)

[1] FALSE

This is because they need about 5 seconds to complete. If we try to launch another future at
this point;

f3 <- future(slow_sum(rev(x))) ## <= blocks here

it will not return instantly, because it has to wait for one of the parallel workers to be available,
i.e. that either of f1 and f2, or both, are resolved.

Immediately after f3 is created, we will see which it was:

resolved(f1)

[1] TRUE

resolved(f2)

[1] FALSE
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resolved(f3)

[1] FALSE

If we then call:

value(f1) + value(f2)

[1] 55

value(f3)

[1] 55

6.2 Choosing a parallel backend

Above I showed how the developer can use future(), value() and sometimes resolved() to
implement tasks in parallel.

There was also the plan() function, which controls how and where these tasks are processed:

• plan() - set how and where futures are evaluated

We should the control of this to the end user.

Next, let’s look at a few different parallel backends we can set.

6.2.1 sequential (default)

plan(sequential)

f1 <- future(slow_sum(x_head)) # blocks until done
f2 <- future(slow_sum(x_tail)) # blocks until done

v <- value(f1) + value(f2)
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6.2.2 multisession: in parallel on local computer

plan(multisession, workers = 2)

f1 <- future(slow_sum(x_head)) # in the background
f2 <- future(slow_sum(x_tail)) # in the background

v <- value(f1) + value(f2)

What’s happening under the hood is:

workers <- parallelly::makeClusterPSOCK(2)
plan(cluster, workers = workers)

which is very similar to:

workers <- parallel::makeCluster(2)
plan(cluster, workers = workers)

is you happened to have used the parallel package before.

6.2.3 cluster: in parallel on multiple computers

If we have SSH access to other machines with R installed, we can do:

hostnames <- c("pi", "remote.server.org")
plan(cluster, workers = hostnames)

f1 <- future(slow_sum(x_head)) # on either 'pi' or 'remote.server.org'
f2 <- future(slow_sum(x_tail)) # on either 'pi' or 'remote.server.org'

v <- value(f1) + value(f2)

What’s happening under the hood is:

hostnames <- c("pi", "remote.server.org")
workers <- parallelly::makeClusterPSOCK(hostnames)
plan(cluster, workers = workers)
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where makeClusterPSOCK() connects to the different machines over SSH using pre-configured
SSH keys and reverse tunneling of ports.

The parallelly package is a utility package, part of the Futureverse.

6.2.4 There are other parallel backends and more to come

6.2.4.1 future.callr - parallelize locally using callr

The callr package can evaluate R expressions in the background on your local computer. The
future.callr implements a future backend on top of callr, e.g.

plan(future.callr::callr, workers = 4)

This works similarly to plan(multisession, workers = 4), but has the benefit of being able
to run more than 125 background workers, which is a limitation of R itself.

6.2.4.2 future.batchtools - parallelize using batchtools

The batchtools package is designed to evaluate R expressions via a, so called, job scheduler.
Job schedulers are commonly used on high-performance compute (HPC) clusters, where many
users run at the same time. The job scheduler allows them to request slots on the system,
which often has tens or hundreds of compute nodes. Common job schedulers are Slurm, SGE,
and Torque.

The future.batchtools implements a future backend on top of batchtools.

For example, if you are a user of the Sherlock HPC cluster at Stanford University, you can
use:

plan(future.batchtools::batchtools_slurm)

This will cause future() to be submitted to the Slurm job-scheduler queue. When a slot is
available, the job is processed on one of the many compute nodes, and when done, the results
are stored to file.

Calling resolved() will query Slurm whether the job is completed or not. Internally, the
batchtools_slurm backend calls the squeue command to check if the job is done or not.

Calling value() will read the results back into R. The batchtools_slurm backend relies on
the file system for this. At the end of each job, the future framework saves the results to file,
which then value() reads back.
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This future backend has a greater latency, because everything has to be queued on a shared
job queue and data and results are communicated via the file system. This backend is useful
for long running futures and for the huge throughput that an HPC environment can provide.

6.3 Revisiting the future assignment operator (%<-%)

When we do:

v %<-% expr

the following is done under the hood1:

f <- future(expr)
delayedAssign("v", value(f))

where delayedAssign(name, value) is a function part of R that assigned the value value to
variable name, but not until the variable is used. In our case, this means that:

value(f)

is only called if, and only if, we “touch” variable v. This is why:

v %<-% expr

can create a future without blocking.

1There is no variable f created; instead it is hidden away using the name ...future.v.
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7 Non-exportable objects

We already know that some algorithms are such that they cannot be parallelized, e.g. the next
iteration depends on the result of the previous iterations.

For example, assume we set up a database connection to a MariaDB database called sakila
hosted on a remote server using DBI:

library(DBI)
con <- dbConnect(RMariaDB::MariaDB(),
host = "relational.fit.cvut.cz", port = 3306,
dbname = "sakila",
username = "guest", password = "relational"

)
con

<MariaDBConnection>
Host: relational.fit.cvut.cz
Server:
Client:

We happen to know there is a table called film in this database. We can read in this table
into R as a tibble data frame using:

film <- dbReadTable(con, "film")
film <- as_tibble(film)
film

# A tibble: 1,000 x 13
film_id title description release_year language_id original_language_id
<int> <chr> <chr> <int> <int> <int>

1 1 ACADEMY DI~ A Epic Dra~ 2006 1 NA
2 2 ACE GOLDFI~ A Astoundi~ 2006 1 NA
3 3 ADAPTATION~ A Astoundi~ 2006 1 NA
4 4 AFFAIR PRE~ A Fanciful~ 2006 1 NA
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5 5 AFRICAN EGG A Fast-Pac~ 2006 1 NA
6 6 AGENT TRUM~ A Intrepid~ 2006 1 NA
7 7 AIRPLANE S~ A Touching~ 2006 1 NA
8 8 AIRPORT PO~ A Epic Tal~ 2006 1 NA
9 9 ALABAMA DE~ A Thoughtf~ 2006 1 NA
10 10 ALADDIN CA~ A Action-P~ 2006 1 NA
# i 990 more rows
# i 7 more variables: rental_duration <int>, rental_rate <dbl>, length <int>,
# replacement_cost <dbl>, rating <chr>, special_features <chr>,
# last_update <dttm>

7.1 A database connection is only valid in the current R session

Now, say we wish to do this in parallel instead. If we attempt to do:

library(future)
plan(multisession)

f <- future({
df <- dbReadTable(con, "film")
as_tibble(df)

})

It will not work;

film <- value(f)

Error: external pointer is not valid

The reason is that the database connection (con) only works in the R session where it was
created. When we tried to use it a parallel worker’s R process, it is invalid there. This is
certainly not obvious from that error message!

Technically, this has to do with pointers, which is a programming term used in low-level
programming languages such as C and C++. In this case, we can inspect con to see that it
indeed has an external pointer:

str(con)
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Formal class 'MariaDBConnection' [package "RMariaDB"] with 7 slots
..@ ptr :<externalptr>
..@ host : chr "relational.fit.cvut.cz"
..@ db : chr "sakila"
..@ load_data_local_infile: logi FALSE
..@ bigint : chr "integer64"
..@ timezone : chr "UTC"
..@ timezone_out : chr "UTC"

If we dig deeper,

con@ptr

<pointer: 0x55bb80fb9bf0>

it reveals that its a pointer to a specific address in memory, which exactly how they are used
in C and C++. Because it is a memory pointer, that pieces of memory does not exist in
the parallel worker. The good thing is that R detects when we send over an object with an
external pointer (here con). When it detects that, it invalidates the pointer by setting it to
null (memory address zero) when sending it over. We can see this is we do:

f <- future(con@ptr)
ptr <- value(f)
ptr

<pointer: (nil)>

So, when we try con in a parallel workers, the external pointer con@ptr is no longer useful.
DBI detects this invalid pointer when we call dbReadTable(con, "film") and throws the
error.

7.2 Same problem when saving to file

Note that you have the exact same problem if you would try to save the database connection
to file,

saveRDS(con, "db_con.rds")

and then load it back in again:
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con2 <- readRDS("db_con.rds")

The con2 object represents a non-working database connection:

film <- dbReadTable(con2, "film")

Error: external pointer is not valid

This makes sense, because in the end of the day, it is a connection to a remote database that
involves a live connection over internet with authentication, and more. Being able to save its
state to file, would be a lot to ask for of the DBI package, but also of the remote database
server.

7.3 Workaround

A workaround is to create a new database connection in the new R session, or in the parallel
worker;

library(DBI)
library(future)
plan(multisession)

f <- future({
con <- dbConnect(RMariaDB::MariaDB(),

host = "relational.fit.cvut.cz", port = 3306,
dbname = "sakila",
username = "guest", password = "relational"

)

df <- dbReadTable(con, "film")
as_tibble(df)

})

film <- value(f)
film

# A tibble: 1,000 x 13
film_id title description release_year language_id original_language_id
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<int> <chr> <chr> <int> <int> <int>
1 1 ACADEMY DI~ A Epic Dra~ 2006 1 NA
2 2 ACE GOLDFI~ A Astoundi~ 2006 1 NA
3 3 ADAPTATION~ A Astoundi~ 2006 1 NA
4 4 AFFAIR PRE~ A Fanciful~ 2006 1 NA
5 5 AFRICAN EGG A Fast-Pac~ 2006 1 NA
6 6 AGENT TRUM~ A Intrepid~ 2006 1 NA
7 7 AIRPLANE S~ A Touching~ 2006 1 NA
8 8 AIRPORT PO~ A Epic Tal~ 2006 1 NA
9 9 ALABAMA DE~ A Thoughtf~ 2006 1 NA
10 10 ALADDIN CA~ A Action-P~ 2006 1 NA
# i 990 more rows
# i 7 more variables: rental_duration <int>, rental_rate <dbl>, length <int>,
# replacement_cost <dbl>, rating <chr>, special_features <chr>,
# last_update <dttm>

7.4 Futureverse can help us detect this before it happens

The problem of non-exportable objects it not just for database connections. It happens for a
large number of other classes of objects. Most of them have one thing in common: the hold a
“reference” to some external resources, e.g. a file connection, a website connection, a database
connection, a handler to an in-memory object living in a Python or a Java process running in
the background. However, there are also cases where the references is an external pointer to
a piece of the memory on the current machine.

For a list of known cases, see https://future.futureverse.org/articles/future-4-non-exportable-
objects.html.

The future package can scan for external pointers, and other types of “references”. We can
use this to help us protect against these type of mistakes:

library(future)
options(future.globals.onReference = "error") 1

plan(multisession)

f <- future({
df <- dbReadTable(con, "film")
as_tibble(df)

})

1 R option to tell future to prevent objects with external pointers from being exported to a
parallel worker.
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Error: Detected a non-exportable reference ('externalptr') in one of the globals ('con' of class 'MariaDBConnection') used in the future expression

Timing stopped at: 0.001 0 0.002

This is not the default setting, because there exist objects with external points that can indeed
be exported. For example, data.table objects have external pointers, but the data.table
package is clever enough to ignore it, if the pointer is invalid. For example,

library(data.table)

dt <- as.data.table(iris)
dt

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1: 5.1 3.5 1.4 0.2 setosa
2: 4.9 3.0 1.4 0.2 setosa
3: 4.7 3.2 1.3 0.2 setosa
4: 4.6 3.1 1.5 0.2 setosa
5: 5.0 3.6 1.4 0.2 setosa
---
146: 6.7 3.0 5.2 2.3 virginica
147: 6.3 2.5 5.0 1.9 virginica
148: 6.5 3.0 5.2 2.0 virginica
149: 6.2 3.4 5.4 2.3 virginica
150: 5.9 3.0 5.1 1.8 virginica

We can see the external pointer, if we use:

str(dt)

Classes 'data.table' and 'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, ".internal.selfref")=<externalptr>

The pointer is:
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attr(dt, ".internal.selfref")

<pointer: 0x55bb7aad4dd0>

If we would set the above R option, we would get an error if we would try to send dt to a
parallel worker. We don’t want that, because it works:

f <- future(summary(dt))
value(f)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species
setosa :50
versicolor:50
virginica :50

If we inspect the pointer of dt on the parallel worker, we’ll find that it is null (as expected);

f <- future(attr(dt, ".internal.selfref"))
ptr <- value(f)
ptr

<pointer: (nil)>

If we round trip to the file system, we see this familiar behavior of external pointers being set
to null by R:

saveRDS(dt, "dt.rds")
attr(dt, ".internal.selfref")
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<pointer: 0x55bb7aad4dd0>

dt2 <- readRDS("dt.rds")
attr(dt2, ".internal.selfref")

<pointer: (nil)>

7.5 What about forked parallelization?

One may think that forked parallel processing could be a workaround. When using forks, the
operating system will “clone” our main R session and perfectly replicate everything in the
child parallel process.

Let’s try with our database example;

library(DBI)
con <- dbConnect(RMariaDB::MariaDB(),
host = "relational.fit.cvut.cz", port = 3306,
dbname = "sakila",
username = "guest", password = "relational"

)
con

<MariaDBConnection>
Host: relational.fit.cvut.cz
Server:
Client:

library(future)
plan(multicore) ## forked parallelization

f <- future({
df <- dbReadTable(con, "film")
as_tibble(df)

})

film <- value(f)
film
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# A tibble: 1,000 x 13
film_id title description release_year language_id original_language_id
<int> <chr> <chr> <int> <int> <int>

1 1 ACADEMY DI~ A Epic Dra~ 2006 1 NA
2 2 ACE GOLDFI~ A Astoundi~ 2006 1 NA
3 3 ADAPTATION~ A Astoundi~ 2006 1 NA
4 4 AFFAIR PRE~ A Fanciful~ 2006 1 NA
5 5 AFRICAN EGG A Fast-Pac~ 2006 1 NA
6 6 AGENT TRUM~ A Intrepid~ 2006 1 NA
7 7 AIRPLANE S~ A Touching~ 2006 1 NA
8 8 AIRPORT PO~ A Epic Tal~ 2006 1 NA
9 9 ALABAMA DE~ A Thoughtf~ 2006 1 NA
10 10 ALADDIN CA~ A Action-P~ 2006 1 NA
# i 990 more rows
# i 7 more variables: rental_duration <int>, rental_rate <dbl>, length <int>,
# replacement_cost <dbl>, rating <chr>, special_features <chr>,
# last_update <dttm>

It certainly looks like it worked! However, while doing this, we managed to confuse DBI and
MariaDB. If we try to use con again, we get:

film <- dbReadTable(con, "film")

Error: Lost connection to MySQL server during query [2013]

Conclusion, it is tempting to think forked processing can solve things that other parallelization
backends cannot handle, but it is often the devil in disguise.
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8 foreach() is not a for-loop

For-loops are special in the way they can assign values to objects outside of the for-loop. For
example,

xs <- list()
ys <- list()
last_idx <- 0
for (idx in 1:3) {
xs[[idx]] <- letters[idx]
ys[[idx]] <- LETTERS[idx]
last_idx <- idx

}

assigns to both xs and ys. We also see that last_idx is updated in every iteration, and, when
the for loop completes, it holds:

last_idx

[1] 3

In contrast, we cannot do the same for map-reduce calls, such as lapply(), because they
return results, but cannot assign outside.

8.1 Super assignment (<<-) is not a solution

Warning, using “super” assignments (<<-), as in:

xs <- list()
ys <- list()
last_idx <- 0
void <- lapply(1:3, function(idx) {
xs[[idx]] <<- letters[idx]
ys[[idx]] <<- LETTERS[idx]
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last_idx <<- idx
})

or, similarly, assign(..., envir = parent.frame()), is considered a bad practise for many
reasons. Please, do not use such hacks! (they will come and bite you if you try - trust
me).

Previously, I said that any lapply() call can be replaced with a future_lapply() such that
it can run in parallel. What would happen if we would go ahead and use the above <<- hack?
Let us try:

library(future.apply)
plan(multisession)

xs <- list()
ys <- list()
last_idx <- 0
void <- future_lapply(1:3, function(idx) {
xs[[idx]] <<- letters[idx]
ys[[idx]] <<- LETTERS[idx]
last_idx <<- idx

})

If we check xs, ys, and last_idx afterward;

str(xs)

list()

str(ys)

list()

last_idx

[1] 0
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we find that they are empty and zero.

Q. Why is that?

The reason is that the expressions:

xs[[idx]] <<- letters[idx]
ys[[idx]] <<- LETTERS[idx]
last_idx <<- idx

are evaluated in another R process. The assignment to xs, ys, and last_idx is done to the
global environment of that R process, which is not the same as the global environment of
our main R session. In our main R session, the only assignment to xs and ys was from our
initial:

xs <- list()
ys <- list()
last_idx <- 0

assignments, which is why they are still the same.

Now, assume for a moment it would indeed be possible to use <<- to assign to the main
R session also from parallel processes. If so, what value should last_idx have at the very
end? That would depend on in which order the parallel tasks would complete. For instance,
imagine the first iteration (idx = 1) would be very slow and therefore finish last. Would you
then expect last_idx to be 1 or 3?

Conclusion: It is not possible, and it does not make sense, to assign to the global environment
when running in parallel!

8.2 Return instead of assign in map-reduce calls

The solution for map-reduce functions, such as lapply(), is to return all results and split
afterward, e.g.

res <- lapply(1:3, function(idx) {
data.frame(x = letters[idx], y = LETTERS[idx], idx = idx)

})
xs <- lapply(res, `[[`, "x")
ys <- lapply(res, `[[`, "y")
last_idx <- res[[length(res)]][["last_idx"]]
rm(res)
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str(xs)

List of 3
$ : chr "a"
$ : chr "b"
$ : chr "c"

str(ys)

List of 3
$ : chr "A"
$ : chr "B"
$ : chr "C"

last_idx

NULL

This strategy works in parallel too:

library(future.apply)
plan(multisession)

res <- future_lapply(1:3, function(idx) {
list(x = letters[idx], y = LETTERS[idx], idx = idx)

})
xs <- lapply(res, `[[`, "x")
ys <- lapply(res, `[[`, "y")
last_idx <- res[[length(res)]][["idx"]]
rm(res)

str(xs)

List of 3
$ : chr "a"
$ : chr "b"
$ : chr "c"
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str(ys)

List of 3
$ : chr "A"
$ : chr "B"
$ : chr "C"

last_idx

[1] 3

8.3 foreach() is a map-reduce function

The main thing to understand is that foreach() does not work like a for-loop. If you would
try, say

library(doFuture)
registerDoFuture()
plan(multisession)

xs <- list()
ys <- list()
last_idx <- 0
void <- foreach(idx = 1:3, .export = c("xs", "ys")) %dopar% {
xs[[idx]] <- letters[idx]
ys[[idx]] <- LETTERS[idx]
last_idx <- idx

}

you’ll find that:

str(xs)

list()

str(ys)
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list()

last_idx

[1] 0

This is because foreach() is a map-reduce function. It is only its name and the %dopar%
operator that makes it visually resemble a for-loop although it isn’t one. To further clarify
this, if it would not be for the %dopar% operator, the original creator would probably have
designed foreach() to take a function just lapply(), e.g.

void <- foreach(idx = 1:3, function(idx) {
...

})

If that would have been the case, it would be clear that foreach() is just another map-reduce
function lust like lapply() and map() of the purrr package.

To conclude, we should always use foreach() as a map-reduce function, e.g.

library(doFuture)
plan(multisession)

res <- foreach(idx = 1:3) %dofuture% {
list(x = letters[idx], y = LETTERS[idx], idx = idx)

}
xs <- lapply(res, `[[`, "x")
ys <- lapply(res, `[[`, "y")
last_idx <- res[[length(res)]][["idx"]]
rm(res)

str(xs)

List of 3
$ : chr "a"
$ : chr "b"
$ : chr "c"

str(ys)
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List of 3
$ : chr "A"
$ : chr "B"
$ : chr "C"

last_idx

[1] 3
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9 mclapply() - is it really magic?

9.1 Output is at best fake from mclapply()

library(parallel)

y <- mclapply(1:3, print)

The output produced by print(1), print(2), and print(3) on the parallel workers, may
or may not be visible. If you call the above in in the RStudio Console, or in a RMarkdown
document, there will be no output visible. If you run R in a Linux terminal, you will probably
see something like:

[1] 1
[1] 3
[1] 2

That is more luck than skill by R - it is the Linux terminal that saves us by relaying the output.
Note also that the output is in whatever parallel worker calls print() first. There is also a
risk that the different output interweave each other, e.g.

[1[1]
] 1
3
[1] 2

We can confirm that the output never reaches the main R session by testing with
capture.output(). If we do this using a regular lapply() call, then we get:

output <- capture.output(y <- lapply(1:3, print))
output

[1] "[1] 1" "[1] 2" "[1] 3"
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However, when we use mclapply(), we get nothing:

output <- capture.output(y <- mclapply(1:3, print))
output

character(0)

This is actually not that surprising. capture.output() sets up a sink, which internally writes
output to a textConnection() connection. When used in a forked parallel workers, this
connection ends up writing to its locally cloned text connection. That captured output is not
available in the parent R session. In other words, all “captured” output happening in parallel
workers are lost.

In contrast, all functions in the Futureverse relays output in parallel workers to the main R
session. It is also done such that the “natural” order is respected. For example,

library(future.apply)
plan(multicore) 1

y <- future_lapply(1:3, print)

1 multicore uses forked parallelization based on the same code as mclapply().

[1] 1
[1] 2
[1] 3

and

output <- capture.output(y <- future_lapply(1:3, print))
output

[1] "[1] 1" "[1] 2" "[1] 3"

9.2 Warnings are lost by mclapply()

What happens with warning? Consider:
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y <- lapply(-1:1, sqrt)

Warning in FUN(X[[i]], ...): NaNs produced

which produces a warning from sqrt(-1). If we try the same with mclapply(), that warning
is lost:

library(parallel)

y <- mclapply(-1:1, sqrt)

In contrast, all functions in the Futureverse relays warnings, and any other type of condition,
in parallel workers to the main R session. It is also done such that the “natural” order is
respected. For example,

library(future.apply)
plan(multicore)

y <- future_lapply(-1:1, sqrt)

Warning in ...future.FUN(...future.X_jj, ...): NaNs produced

9.3 Errors are mangled

What happens with errors? Consider:

y <- lapply(list(1, 2, "a"), sqrt)

Error in FUN(X[[i]], ...): non-numeric argument to mathematical function

which produces an error because of sqrt("a"). If we try the same with mclapply(), that
error is turned into an obscure warning:

library(parallel)

y <- mclapply(list(1, 2, "a"), sqrt)
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Warning in mclapply(list(1, 2, "a"), sqrt): scheduled core 1 encountered error
in user code, all values of the job will be affected

Because it is just a warning, it means that your code keeps running as nothing
really happened!

This is one example how mistakes in scientific pipelines can go by unnoticed. If we inspect y,
we can see there is information about the error:

str(y)

List of 3
$ : 'try-error' chr "Error in FUN(X[[i]], ...) : non-numeric argument to mathematical function\n"
..- attr(*, "condition")=List of 2
.. ..$ message: chr "non-numeric argument to mathematical function"
.. ..$ call : language FUN(X[[i]], ...)
.. ..- attr(*, "class")= chr [1:3] "simpleError" "error" "condition"
$ : num 1.41
$ : 'try-error' chr "Error in FUN(X[[i]], ...) : non-numeric argument to mathematical function\n"
..- attr(*, "condition")=List of 2
.. ..$ message: chr "non-numeric argument to mathematical function"
.. ..$ call : language FUN(X[[i]], ...)
.. ..- attr(*, "class")= chr [1:3] "simpleError" "error" "condition"

To make sure that errors are not slipping by unnoticed, we need to do something like:

is_error <- vapply(y, inherits, "try-error", FUN.VALUE = NA)
if (any(is_error)) {

## error objects are stored in attributes
first_error <- attr(y[is_error][[1]], "condition")
stop("Detected one or more errors: ", conditionMessage(first_error))

}

Error in eval(expr, envir, enclos): Detected one or more errors: non-numeric argument to mathematical function

In contrast, all functions in the Futureverse relays errors. For example,

library(future.apply)
plan(multicore)
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y <- future_lapply(list(1, 2, "a"), sqrt)

Error in ...future.FUN(...future.X_jj, ...): non-numeric argument to mathematical function

9.4 What happens when a parallel crashes?

Sometime a parallel workers crashes. This can happen if there are too many processes running
on the same machine and all memory gets consumed. Then the operating systems, particularly
on Linux, decides to kill process in order for the machine not to go down. Another reason
could be that the R code calls some incorrect C code, and it terminates with a segfault because
of that, e.g.

*** caught illegal operation ***
address 0x2b3a8b234ccd, cause 'illegal operand'

We can emulate terminating the current R process by calling tools::pskill(Sys.getpid()).
For example,

y <- lapply(1:3, function(idx) {
if (idx == 2) tools::pskill(Sys.getpid())
idx

})

This will result in R terminating abruptly:

Terminated

Now, what happens if we terminate a parallel worker? If we use mclapply(), this is what
happens:

library(parallel)

y <- mclapply(1:3, function(idx) {
if (idx == 2) tools::pskill(Sys.getpid())
idx

})

Warning in mclapply(1:3, function(idx) {: scheduled core 2 did not deliver a
result, all values of the job will be affected
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Again, just a warning! Danger!

In contrast, the Futureverse detects when a parallel workers crashes and gives an informative
error message:

library(future.apply)
plan(multicore)

y <- future_lapply(1:3, function(idx) {
if (idx == 2) tools::pskill(Sys.getpid())
idx

})

Warning in mccollect(jobs = jobs, wait = TRUE): 1 parallel job did not deliver
a result

Error: Failed to retrieve the result of MulticoreFuture (future_lapply-2) from the forked worker (on localhost; PID 256214). Post-mortem diagnostic: No process exists with this PID, i.e. the forked localhost worker is no longer alive. The total size of the 5 globals exported is 6.25 KiB. The three largest globals are '...future.FUN' (6.20 KiB of class 'function'), '...future.elements_ii' (56 bytes of class 'numeric') and 'future.call.arguments' (0 bytes of class 'list')
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Summary

In these two lectures, we’ve learned that:

• Parallelization does not have to be hard

• Futureverse simplifies parallelization in R (disclaimer!)

• foreach() is, lust like lapply() not a for-loop

• There are things we cannot parallelize

• Forked parallel processing is neat, but should be used with caution

Much more information can be found at https://www.futureverse.org.
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Part III
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